Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers
dc.contributor.author | Alessio Verni, Giuseppe | |
dc.contributor.author | Long, Brenda | |
dc.contributor.author | Gity, Farzan | |
dc.contributor.author | Lanius, Martin | |
dc.contributor.author | Schüffelgen, Peter | |
dc.contributor.author | Mussler, Gregor | |
dc.contributor.author | Grützmacher, Detlev | |
dc.contributor.author | Greer, James C. | |
dc.contributor.author | Holmes, Justin D. | |
dc.date.accessioned | 2018-11-15T16:25:01Z | |
dc.date.available | 2018-11-15T16:25:01Z | |
dc.date.issued | 2018-09-27 | |
dc.date.updated | 2018-11-15T11:44:40Z | |
dc.description.abstract | Bismuth has been identified as a material of interest for electronic applications due to its extremely high electron mobility and quantum confinement effects observed at nanoscale dimensions. However, it is also the case that Bi nanostructures are readily oxidised in ambient air, necessitating additional capping steps to prevent surface re-oxidation, thus limiting the processing potential of this material. This article describes an oxide removal and surface stabilization method performed on molecular beam epitaxy (MBE) grown bismuth thin-films using ambient air wet-chemistry. Alkanethiol molecules were used to dissolve the readily formed bismuth oxides through a catalytic reaction; the bare surface was then reacted with the free thiols to form an organic layer which showed resistance to complete reoxidation for up to 10 days. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Alessio Verni, G., Long, B., Gity, F., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D., Greer, J. and Holmes, J. D. (2018) 'Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers', RSC Advances, 8(58), pp. 33368-33373. doi: 10.1039/c8ra06840b | en |
dc.identifier.doi | 10.1039/c8ra06840b | |
dc.identifier.endpage | 33373 | en |
dc.identifier.issn | 2046-2069 | |
dc.identifier.issued | 58 | en |
dc.identifier.journaltitle | RSC Advances | en |
dc.identifier.startpage | 33368 | en |
dc.identifier.uri | https://hdl.handle.net/10468/7121 | |
dc.identifier.volume | 8 | en |
dc.language.iso | en | en |
dc.publisher | Royal Society of Chemistry | en |
dc.relation.uri | https://pubs.rsc.org/en/Content/ArticleLanding/2018/RA/C8RA06840B | |
dc.rights | © The Royal Society of Chemistry 2018. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/3.0/ | en |
dc.subject | Bismuth compounds | en |
dc.subject | Catalysis | en |
dc.subject | Molecular beam epitaxy | en |
dc.subject | Oxide films | en |
dc.subject | Stabilization | en |
dc.subject | Surface reactions | en |
dc.subject | Thin films | en |
dc.subject | Alkanethiol molecules | en |
dc.subject | Bismuth thin films | en |
dc.subject | Catalytic reactions | en |
dc.subject | Electronic application | en |
dc.subject | High electron mobility | en |
dc.subject | Nanoscale dimensions | en |
dc.subject | Quantum confinement effects | en |
dc.subject | Surface stabilization | en |
dc.title | Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers | en |
dc.type | Article (peer-reviewed) | en |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: