Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering

dc.contributor.authorTsakmakidis, K. L.en
dc.contributor.authorShen, L.en
dc.contributor.authorSchulz, Sebastian A.en
dc.contributor.authorZheng, X.en
dc.contributor.authorUpham, J.en
dc.contributor.authorDeng, X.en
dc.contributor.authorAltug, H.en
dc.contributor.authorVakakis, A. F.en
dc.contributor.authorBoyd, R. W.en
dc.contributor.funderHorizon 2020en
dc.contributor.funderNational Natural Science Foundation of Chinaen
dc.contributor.funderMax Planck Institute for the Science of Lighten
dc.contributor.funderGovernment of Canadaen
dc.date.accessioned2023-09-13T12:19:28Z
dc.date.available2023-09-13T12:19:28Z
dc.date.issued2017-06-23en
dc.description.abstractA century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δt inversely proportional to the bandwidth (Δt·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.en
dc.description.sponsorshipMax Planck Institute for the Science of Light (Eugen Lommel fellowship); Government of Canada (Canada Excellence Research Chairs Program); Natural Science Foundation of China (grant no. 61372005; grant no. 41331070)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationTsakmakidis, K. L., Shen, L., Schulz, S. A., Zheng, X., Upham, J., Deng, X. Altug, H., Vakakis, A. F. and Boyd, R. W. (2017) 'Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering', Science, 356(6344), pp. 1260-1264. doi:10.1126/science.aam6662en
dc.identifier.doi10.1126/science.aam6662en
dc.identifier.eissn1095-9203en
dc.identifier.endpage1264en
dc.identifier.issn0036-8075en
dc.identifier.issued6344en
dc.identifier.journaltitleScienceen
dc.identifier.startpage1260en
dc.identifier.urihttps://hdl.handle.net/10468/14963
dc.identifier.volume356en
dc.language.isoenen
dc.publisherAmerican Association for the Advancement of Scienceen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/737071/EU/Ultrasensitive chiral detection by signal-reversing cavity polarimetry: applications to in-situ proteomics, single-molecule chirality, HPLC analysis, medical diagnostics, and atmospheric studies/ULTRACHIRALen
dc.rights© 2017, the Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.en
dc.subjectLinear, time-invariant resonant systemsen
dc.subjectHigh time-bandwidth performanceen
dc.titleBreaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineeringen
dc.typeArticle (peer-reviewed)en
oaire.citation.issue6344en
oaire.citation.volume356en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Science_revised_2017.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
aam6662_tsakmakidis_sm.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Supplementary Material
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: