Tapered nonlinear vibration energy harvester for powering Internet of Things
dc.contributor.author | Paul, Kankana | |
dc.contributor.author | Amann, Andreas | |
dc.contributor.author | Roy, Saibal | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.contributor.funder | Horizon 2020 | en |
dc.date.accessioned | 2021-01-04T10:53:58Z | |
dc.date.available | 2021-01-04T10:53:58Z | |
dc.date.issued | 2020-11-30 | |
dc.date.updated | 2021-01-04T10:45:42Z | |
dc.description.abstract | The lack of a sustainable power source to substitute batteries for long-term applications limits the widespread deployment of wireless sensor nodes in this era of the Internet of Things. Conventional linear Vibration Energy Harvesters are inefficient in converting ambient mechanical energy into usable electrical energy owing to their narrow frequency bandwidth when harnessing mechanical energy that is spread over a wide range of frequencies. In this work, we design, develop and demonstrate high power density nonlinear wideband energy harvesters using novel tapered spring architectures in an autonomous wireless sensor node system. These spring structures exhibit a nonlinear restoring force arising from the atypical stress distribution that can be additionally tuned by changing the taper-ratio in the structure. We investigate different tapering designs in order to achieve optimal spring hardening nonlinearities. This nonlinearity aids in widening the operable bandwidth, making the harvesters suitable for scavenging energy from real-world broadband vibrations. We obtain power densities of the order of 2660 µW/cm3g2 in the nonlinear energy harvester, outpacing most contemporary energy scavengers. We present a modified Perturb and Observe algorithm that allows tracing of the maximum power point in the context of non-stationary vibration conditions. We use the fabricated nonlinear device to power a wireless sensor node that reports on vital physical parameters (humidity, temperature), thereby enabling a resilient remote data acquisition system. This demonstrates the potential of our design to provide a sustainable energy source for platforms within the Internet of Things. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 116267 | en |
dc.identifier.citation | Paul, K., Amann, A. and Roy, S. (2020) 'Tapered nonlinear vibration energy harvester for powering Internet of Things', Applied Energy. doi: 10.1016/j.apenergy.2020.116267 | en |
dc.identifier.doi | 10.1016/j.apenergy.2020.116267 | en |
dc.identifier.endpage | 15 | en |
dc.identifier.issn | 0306-2619 | |
dc.identifier.journaltitle | Applied Energy | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/10851 | |
dc.language.iso | en | en |
dc.publisher | Elsevier Ltd. | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/13/RC/2077/IE/CONNECT: The Centre for Future Networks & Communications/ | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/H2020::RIA/730957/EU/European Infrastructure Powering the Internet of Things/EnABLES | en |
dc.rights | © 2020, Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Broadband | en |
dc.subject | Electromagnetic transduction | en |
dc.subject | Maximum power point | en |
dc.subject | Power density | en |
dc.subject | Self-powered WSN | en |
dc.subject | Tapered vibration energy harvester | en |
dc.title | Tapered nonlinear vibration energy harvester for powering Internet of Things | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- Accepted_version_of_the_manuscript.pdf
- Size:
- 4.97 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
Loading...
- Name:
- Accepted version of the manuscript.docx
- Size:
- 2.75 MB
- Format:
- Microsoft Word XML
- Description:
- Author's Original Accepted Version
Loading...
- Name:
- ScienceDirect_files_04Jan2021_10-56-38.510.zip
- Size:
- 45.7 KB
- Format:
- http://www.iana.org/assignments/media-types/application/zip
- Description:
- Supplementary Material
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: