Quantification of residual stress governing the spin-reorientation transition (SRT) in amorphous magnetic thin films

dc.check.date2022-11-24
dc.check.infoAccess to this article is restricted until 24 months after publication by request of the publisher.en
dc.contributor.authorCronin, Darragh
dc.contributor.authorHardiman, M.
dc.contributor.authorLordan, Daniel
dc.contributor.authorWei, Guannan
dc.contributor.authorMcCloskey, Paul
dc.contributor.authorÓ Mathúna, S. Cian
dc.contributor.authorMasood, Ansar
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2021-01-04T09:55:28Z
dc.date.available2021-01-04T09:55:28Z
dc.date.issued2020-11-24
dc.date.updated2021-01-04T09:45:33Z
dc.description.abstractSoft magnetic thin films with in-plane uniaxial magnetic anisotropy are of significant importance for a broad range of technological applications, including high-frequency power conversion. In-plane uniaxial anisotropy in amorphous films is of particular interest for ultra-low materials loss and MHz frequency operations. The present work is focused on one of the fundamental mechanisms, i.e., residual stress, that can negate the uniaxial anisotropy in amorphous films by engendering perpendicular magnetisation and hence, undermining the soft magnetic performance. It is quantified how the nature of residual stress, compressive or tensile, transforms the magnetisation from an in-plane to an out-of-plane configuration, also well-known as spin-reorientation transition (SRT). A correlation between engineered residual stress in multilayer stacks, induced by the uneven expansion of metallic/dielectric layers following a thermal-shock scheme, and SRT mechanism demonstrates tensile stress inside the films undermines the soft magnetic performance. We suggest the magnetic softness can be retained by eluding sources of tensile stress during fabrication or post-processing of the amorphous films.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid167572en
dc.identifier.citationCronin, D., Hardiman, M., Lordan, D., Wei, G., McCloskey, P., O'Mathúna, C. and Masood, A. (2020) 'Quantification of residual stress governing the spin-reorientation transition (SRT) in amorphous magnetic thin films', Journal of Magnetism and Magnetic Materials, 522, 167572 (5pp). doi: 10.1016/j.jmmm.2020.167572en
dc.identifier.doi10.1016/j.jmmm.2020.167572en
dc.identifier.endpage5en
dc.identifier.issn0304-8853
dc.identifier.journaltitleJournal of Magnetism and Magnetic Materialsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/10850
dc.identifier.volume522en
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3180/IE/Advanced Integrated Power Magnetics Technology- From Atoms to Systems/en
dc.rights© 2020, Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectMagnetoelastic anisotropyen
dc.subjectMultilayer stacksen
dc.subjectNano-indentationen
dc.subjectPerpendicular magnetisationen
dc.subjectResidual stressen
dc.subjectSpin-reorientation transitionen
dc.titleQuantification of residual stress governing the spin-reorientation transition (SRT) in amorphous magnetic thin filmsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Paper_Stress_Induced_Final - Resubmitted.pdf
Size:
638.13 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
Paper_Stress_Induced_Final - Resubmitted.docx
Size:
1.99 MB
Format:
Microsoft Word XML
Description:
Author's Original Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: