WSe<sub>(2-x)</sub>Te<sub>x</sub> alloys grown by molecular beam epitaxy

dc.check.date2020-07-18
dc.check.infoAccess to this article is restricted until 12 months after publication by request of the publisher.en
dc.contributor.authorBarton, Adam T.
dc.contributor.authorYue, Ruoyu
dc.contributor.authorWalsh, Lee
dc.contributor.authorZhou, Guanyu
dc.contributor.authorCormier, Christopher
dc.contributor.authorSmyth, Christopher M.
dc.contributor.authorAddou, Rafik
dc.contributor.authorColombo, Luigi
dc.contributor.authorWallace, Robert M.
dc.contributor.authorHinkle, Christopher
dc.contributor.funderNational Institute of Standards and Technologyen
dc.contributor.funderNational Science Foundationen
dc.date.accessioned2019-07-25T10:31:52Z
dc.date.available2019-07-25T10:31:52Z
dc.date.issued2019-07-18
dc.description.abstractThe growth of WSe(2-x)Tex alloys by molecular beam epitaxy has been demonstrated for the first time to investigate the phase transition from the semiconducting 2H phase to the semi-metallic 1T’ phase as a function of Te concentration. Up to 14% Te incorporation, stable alloys in the semiconducting 2H phase are achieved while above 79% Te incorporation, stable alloys in the semi-metallic 1T’ phase are obtained. Our results indicate the MBE-grown WSe(2-x)Tex alloys exhibit a miscibility gap from 14% to 79% Te concentrations at a growth temperature of 250 °C, a temperature compatible with direct vertical back-end-of-line integration. This miscibility gap results in phase separation of two different alloys, both with different composition and crystal structure. While the alloying of small Te concentrations does indeed result in a desired reduction of the semiconducting bandgap, the phase separation above 14% Te incorporation prohibits bandgap tuning for a wider range of applications. These results highlight the competing energies and kinetics associated with producing uniform WSe(2-x)Tex alloys.en
dc.description.sponsorshipNational Institute of Standards and Technology (Award Number 70NANB17H041); National Science Foundation (ECCS Award Numbers 1917025 and 1802166)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBarton, A. Yue, R., Walsh, L., Zhou, G., Cormier, C., Smyth, C. M., Addou, R., Colombo, L., Wallace, R. M. and Hinkle, C. (2019) ‘WSe<sub>(2-x)</sub>Te<sub>x</sub> alloys grown by molecular beam epitaxy’, 2D Materials. doi: 10.1088/2053-1583/ab334den
dc.identifier.doi10.1088/2053-1583/ab334den
dc.identifier.eissn2053-1583
dc.identifier.journaltitle2D Materialsen
dc.identifier.urihttps://hdl.handle.net/10468/8247
dc.language.isoenen
dc.publisherIOP Publishingen
dc.rights© 2019, IOP Publishing Ltd. This Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after a 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0en
dc.rights.urihttps://creativecommons.org/licences/by-nc-nd/3.0en
dc.subjectWSe(2-x)Tex alloysen
dc.subjectMolecular beam epitaxyen
dc.subjectTe incorporationen
dc.titleWSe<sub>(2-x)</sub>Te<sub>x</sub> alloys grown by molecular beam epitaxyen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Barton+et+al_2019_2D_Mater._10.1088_2053-1583_ab334d.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: