Combined electrical and resonant optical excitation characterization of multi-quantum well InGaN-based light-emitting diodes

dc.contributor.authorPresa, Silvino
dc.contributor.authorMaaskant, Pleun P.
dc.contributor.authorKappers, M. J.
dc.contributor.authorHumphreys, C. J.
dc.contributor.authorCorbett, Brian
dc.contributor.funderSeventh Framework Programmeen
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2019-11-01T07:33:54Z
dc.date.available2019-11-01T07:33:54Z
dc.date.issued2016-07-14
dc.description.abstractWe present a comprehensive study of the emission spectra and electrical characteristics of InGaN/GaN multi-quantum well light-emitting diode (LED) structures under resonant optical pumping and varying electrical bias. A 5 quantum well LED with a thin well (1.5 nm) and a relatively thick barrier (6.6 nm) shows strong bias-dependent properties in the emission spectra, poor photovoltaic carrier escape under forward bias and an increase in effective resistance when compared with a 10 quantum well LED with a thin (4 nm) barrier. These properties are due to a strong piezoelectric field in the well and associated reduced field in the thicker barrier. We compare the voltage ideality factors for the LEDs under electrical injection, light emission with current, photovoltaic mode (PV) and photoluminescence (PL) emission. The PV and PL methods provide similar values for the ideality which are lower than for the resistance-limited electrical method. Under optical pumping the presence of an n-type InGaN underlayer in a commercial LED sample is shown to act as a second photovoltaic source reducing the photovoltage and the extracted ideality factor to less than 1. The use of photovoltaic measurements together with bias-dependent spectrally resolved luminescence is a powerful method to provide valuable insights into the dynamics of GaN LEDs.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid075108en
dc.identifier.citationPresa, S., Maaskant, P. P., Kappers, M. J., Humphreys, C. J. and Corbett, B. (2016) 'Combined electrical and resonant optical excitation characterization of multi-quantum well InGaN-based light-emitting diodes', AIP Advances, 6(7), 075108. (13pp.) DOI: 10.1063/1.4959100en
dc.identifier.doi10.1063/1.4959100en
dc.identifier.eissn2158-3226
dc.identifier.endpage13en
dc.identifier.issued7en
dc.identifier.journaltitleAIP Advancesen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/8934
dc.identifier.volume6en
dc.language.isoenen
dc.publisherAIP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP1::NMP/280587/EU/AlGaInN materials on semi-polar templates for yellow emission in solid state lighting applications/ALIGHTen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2276/IE/I-PIC Irish Photonic Integration Research Centre/en
dc.relation.urihttps://aip.scitation.org/doi/10.1063/1.4959100
dc.rights©2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectElectrical conductivityen
dc.subjectElectrical resistivityen
dc.subjectGallium compoundsen
dc.subjectIII-V semiconductorsen
dc.subjectIndium compoundsen
dc.subjectLight emitting diodesen
dc.subjectOptical pumpingen
dc.subjectPhotoluminescenceen
dc.subjectPhotovoltaic effectsen
dc.subjectPiezoelectric devicesen
dc.subjectPiezoelectric semiconductorsen
dc.subjectPiezoelectricityen
dc.subjectQuanten
dc.titleCombined electrical and resonant optical excitation characterization of multi-quantum well InGaN-based light-emitting diodesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.4959100.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: