Self-assembly of gold nanocrystals into discrete coupled plasmonic structures

Thumbnail Image
1695.pdf(3.15 MB)
Published Version
Schopf, Carola
Noonan, Ethel
Quinn, Aidan J.
Iacopino, Daniela
Journal Title
Journal ISSN
Volume Title
Published Version
Research Projects
Organizational Units
Journal Issue
Development of methodologies for the controlled chemical assembly of nanoparticles into plasmonic molecules of predictable spatial geometry is vital in order to harness novel properties arising from the combination of the individual components constituting the resulting superstructures. This paper presents a route for fabrication of gold plasmonic structures of controlled stoichiometry obtained by the use of a di-rhenium thio-isocyanide complex as linker molecule for gold nanocrystals. Correlated scanning electron microscopy (SEM)—dark-field spectroscopy was used to characterize obtained discrete monomer, dimer and trimer plasmonic molecules. Polarization-dependent scattering spectra of dimer structures showed highly polarized scattering response, due to their highly asymmetric D∞h geometry. In contrast, some trimer structures displayed symmetric geometry (D3h), which showed small polarization dependent response. Theoretical calculations were used to further understand and attribute the origin of plasmonic bands arising during linker-induced formation of plasmonic molecules. Theoretical data matched well with experimentally calculated data. These results confirm that obtained gold superstructures possess properties which are a combination of the properties arising from single components and can, therefore, be classified as plasmonic molecules
Plasmonics , Gold nanocrystals , Self-assembly , Plasmonic molecules , Coupled structures
Schopf, C., E. Noonan, A. Quinn and D. Iacopino (2016) Self-Assembly of Gold Nanocrystals into Discrete Coupled Plasmonic Structures', Crystals 6(9): 117 (10 pp). doi: 10.3390/cryst6090117
Link to publisher’s version