Application of artificial neural networks to the identification of weak electrical regions in large area MIM structures
dc.check.date | 2023-10-11 | |
dc.check.info | Access to this article is restricted until 24 months after publication by request of the publisher. | en |
dc.contributor.author | Muñoz-Gorriz, J. | |
dc.contributor.author | Monaghan, Scott | |
dc.contributor.author | Cherkaoui, Karim | |
dc.contributor.author | Suñé, Jordi | |
dc.contributor.author | Hurley, Paul K. | |
dc.contributor.author | Miranda, Enrique | |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2022-07-21T11:50:10Z | |
dc.date.available | 2022-07-21T11:50:10Z | |
dc.date.issued | 2021-10-11 | |
dc.date.updated | 2022-07-19T21:01:51Z | |
dc.description.abstract | Large area metal-insulator-metal (MIM) structures are prone to exhibit weak electrical regions when they are subjected to severe stress conditions. Although the root cause of this problem is hard to identify, it has been attributed to non-uniform oxide thickness, variable dielectric permittivity, correlated defect generation, and fringe effects in capacitors. In this paper, we explore the application of artificial neural networks (ANNs) to the spatial localization of such weak regions. To this end, HfO2-based MIM structures were electrically stressed with the objective of generating a large number of breakdown spots. These spots are statistically distributed both in size and location over the device area. Two-input/two-output ANNs with different number of neurons and hidden layers were assessed with the purpose of identifying the best and simplest option for detecting where the most severe damage occurs. The obtained results are compatible with previous studies based on spatial statistics techniques. The method can be applied to other systems that exhibit multiple localized failure events. | en |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (project TEC2017-84321-C4-4-R); Science Foundation Ireland (AMBER 2 project (12/RC/2278-P2)) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 114312 | en |
dc.identifier.citation | Muñoz-Gorriz, J., Monaghan, S., Cherkaoui, K., Suñé, J., Hurley, P. K. and Miranda, E. (2021) 'Application of artificial neural networks to the identification of weak electrical regions in large area MIM structures', Microelectronics Reliability, 126, 114312 (7pp). doi: 10.1016/j.microrel.2021.114312 | en |
dc.identifier.doi | 10.1016/j.microrel.2021.114312 | en |
dc.identifier.endpage | 7 | en |
dc.identifier.issn | 0026-2714 | |
dc.identifier.journaltitle | Microelectronics Reliability | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13388 | |
dc.identifier.volume | 126 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier Ltd. | en |
dc.rights | © 2021, Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Neural networks | en |
dc.subject | Perceptron | en |
dc.subject | Spatial statistics | en |
dc.subject | Dielectric breakdown | en |
dc.subject | Reliability | en |
dc.subject | MIM | en |
dc.title | Application of artificial neural networks to the identification of weak electrical regions in large area MIM structures | en |
dc.type | Article (peer-reviewed) | en |