Access to this article is restricted until 24 months after publication by request of the publisher.. Restriction lift date: 2019-10-18
3D open-worked inverse opal TiO2 and GeO2 materials for long life, high capacity Li-ion battery anodes
dc.check.date | 2019-10-18 | |
dc.check.info | Access to this article is restricted until 24 months after publication by request of the publisher. | en |
dc.contributor.author | McNulty, David | |
dc.contributor.author | Lonergan, Alex | |
dc.contributor.author | O'Hanlon, Sally | |
dc.contributor.author | O'Dwyer, Colm | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Irish Research Council | en |
dc.date.accessioned | 2018-04-24T14:39:28Z | |
dc.date.available | 2018-04-24T14:39:28Z | |
dc.date.issued | 2017-10-18 | |
dc.date.updated | 2018-04-24T07:23:08Z | |
dc.description.abstract | In this short review, we overview some advancements made in Li-ion battery anode development, where the structural arrangement of the material plays an important role. Specifically, we summarise the benefits of 3D macroporous structure imposed the anode material, in order to improve ionic and electronic conductivity in the absence of conductive additives and binders. Two anode materials are overviewed: TiO2 and GeO2. These are either high capacity anode materials or accessible, abundant materials that are capable of very stable and long-term cycling. We have focused this review on 3D inverse opal structures of these anodes and summarise their enhanced behaviour by comparing their performance metrics to a range of nanoscale and porous analogues of these materials. | en |
dc.description.sponsorship | Irish Research Council (Government of Ireland Award number GOIPG/2016/946) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | McNulty, D., Lonergan, A., O'Hanlon, S. and O'Dwyer, C. (2018) '3D open-worked inverse opal TiO2 and GeO2 materials for long life, high capacity Li-ion battery anodes', Solid State Ionics, 314, pp. 195-203. doi: 10.1016/j.ssi.2017.10.008 | en |
dc.identifier.doi | 10.1016/j.ssi.2017.10.008 | |
dc.identifier.endpage | 203 | en |
dc.identifier.issn | 0167-2738 | |
dc.identifier.journaltitle | Solid State Ionics | en |
dc.identifier.startpage | 195 | en |
dc.identifier.uri | https://hdl.handle.net/10468/5867 | |
dc.identifier.volume | 314 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/13/TIDA/E2761/IE/LiONSKIN - Moldable Li-ion battery outer skin for electronic devices/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ | en |
dc.relation.uri | http://www.sciencedirect.com/science/article/pii/S0167273817307312 | |
dc.rights | © 2017 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | TiO2 | en |
dc.subject | GeO2 | en |
dc.subject | Inverse opal | en |
dc.subject | Li-ion | en |
dc.subject | Semiconductor | en |
dc.subject | Anode | en |
dc.subject | Nanomaterials | en |
dc.title | 3D open-worked inverse opal TiO2 and GeO2 materials for long life, high capacity Li-ion battery anodes | en |
dc.type | Article (peer-reviewed) | en |