Constant mean curvature surfaces of any positive genus

dc.contributor.authorKilian, Martin
dc.contributor.authorKobayashi, S.-P.
dc.contributor.authorRossman , W.
dc.contributor.authorSchmitt, N.
dc.contributor.funderMinistry of Education, Culture, Sports, Science and Technology
dc.contributor.funderDeutsche Forschungsgemeinschaft
dc.contributor.funderEngineering and Physical Sciences Research Council
dc.date.accessioned2023-10-12T13:54:24Z
dc.date.available2023-10-04T14:50:41Zen
dc.date.available2023-10-12T13:54:24Z
dc.date.issued2005-07-20
dc.date.updated2023-10-04T13:50:42Zen
dc.description.abstractThe paper shows the existence of several new families of noncompact constant mean curvature surfaces: (i) singly punctured surfaces of arbitrary genus g 1, (ii) doubly punctured tori, and (iii) doubly periodic surfaces with Delaunay ends.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (Grant DO 776/1); Engineering and Physical Sciences Research Council (Grant GR/S28655/01); Ministry of Education, Culture, Sports, Science and Technology (Monbusho Grant (B)(1)–15340023)
dc.description.statusPeer revieweden
dc.description.versionAccepted Version
dc.format.mimetypeapplication/pdfen
dc.identifier.citationKilian, M., Kobayashi, S., Rossman, W. and Schmitt, N. (2005) 'Constant mean curvature surfaces of any positive genus', Journal of the London Mathematical Society, 72(1), pp. 258-272. doi:10.1112/S0024610705006472
dc.identifier.doi10.1112/S0024610705006472
dc.identifier.eissn1469-7750
dc.identifier.endpage272
dc.identifier.issn0024-6107
dc.identifier.issued1
dc.identifier.journaltitleJournal of the London Mathematical Society
dc.identifier.startpage258
dc.identifier.urihttps://hdl.handle.net/10468/15112
dc.identifier.volume72
dc.language.isoenen
dc.publisherCambridge University Press
dc.rights© 2005, London Mathematical Society. This is the accepted version of the following item: Kilian, M., Kobayashi, S., Rossman, W. and Schmitt, N. (2005) 'Constant mean curvature surfaces of any positive genus', Journal of the London Mathematical Society, 72(1), pp. 258-272, doi:10.1112/S0024610705006472. which has been published in final form at: https://doi.org/:10.1112/S0024610705006472. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
dc.subjectNoncompact constant mean curvature surfaces
dc.titleConstant mean curvature surfaces of any positive genusen
dc.typeArticle (peer-reviewed)
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
JournalofLondonMathSoc-2016-Kilian-ConstantMeanCurvatureSurfacesofanyPositiveGenus.pdf
Size:
226.62 KB
Format:
Adobe Portable Document Format
Description:
Published Version
Loading...
Thumbnail Image
Name:
2kkrs.pdf
Size:
643.17 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version