Constant mean curvature surfaces of any positive genus
dc.contributor.author | Kilian, Martin | |
dc.contributor.author | Kobayashi, S.-P. | |
dc.contributor.author | Rossman , W. | |
dc.contributor.author | Schmitt, N. | |
dc.contributor.funder | Ministry of Education, Culture, Sports, Science and Technology | |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | |
dc.contributor.funder | Engineering and Physical Sciences Research Council | |
dc.date.accessioned | 2023-10-12T13:54:24Z | |
dc.date.available | 2023-10-04T14:50:41Z | en |
dc.date.available | 2023-10-12T13:54:24Z | |
dc.date.issued | 2005-07-20 | |
dc.date.updated | 2023-10-04T13:50:42Z | en |
dc.description.abstract | The paper shows the existence of several new families of noncompact constant mean curvature surfaces: (i) singly punctured surfaces of arbitrary genus g 1, (ii) doubly punctured tori, and (iii) doubly periodic surfaces with Delaunay ends. | |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft (Grant DO 776/1); Engineering and Physical Sciences Research Council (Grant GR/S28655/01); Ministry of Education, Culture, Sports, Science and Technology (Monbusho Grant (B)(1)–15340023) | |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Kilian, M., Kobayashi, S., Rossman, W. and Schmitt, N. (2005) 'Constant mean curvature surfaces of any positive genus', Journal of the London Mathematical Society, 72(1), pp. 258-272. doi:10.1112/S0024610705006472 | |
dc.identifier.doi | 10.1112/S0024610705006472 | |
dc.identifier.eissn | 1469-7750 | |
dc.identifier.endpage | 272 | |
dc.identifier.issn | 0024-6107 | |
dc.identifier.issued | 1 | |
dc.identifier.journaltitle | Journal of the London Mathematical Society | |
dc.identifier.startpage | 258 | |
dc.identifier.uri | https://hdl.handle.net/10468/15112 | |
dc.identifier.volume | 72 | |
dc.language.iso | en | en |
dc.publisher | Cambridge University Press | |
dc.rights | © 2005, London Mathematical Society. This is the accepted version of the following item: Kilian, M., Kobayashi, S., Rossman, W. and Schmitt, N. (2005) 'Constant mean curvature surfaces of any positive genus', Journal of the London Mathematical Society, 72(1), pp. 258-272, doi:10.1112/S0024610705006472. which has been published in final form at: https://doi.org/:10.1112/S0024610705006472. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. | |
dc.subject | Noncompact constant mean curvature surfaces | |
dc.title | Constant mean curvature surfaces of any positive genus | en |
dc.type | Article (peer-reviewed) |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- JournalofLondonMathSoc-2016-Kilian-ConstantMeanCurvatureSurfacesofanyPositiveGenus.pdf
- Size:
- 226.62 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
Loading...
- Name:
- 2kkrs.pdf
- Size:
- 643.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version