Multiscale digital twin for particle breakage in milling: From nanoindentation to population balance model

dc.check.date2023-03-06
dc.check.infoAccess to this article is restricted until 24 months after publication by request of the publisher.en
dc.contributor.authorWang, Li Ge
dc.contributor.authorGe, Ruihuan
dc.contributor.authorChen, Xizhong
dc.contributor.authorZhou, Rongxin
dc.contributor.authorChen, Han-Mei
dc.contributor.funderInternational Fine Particle Research Instituteen
dc.contributor.funderInnovate UKen
dc.date.accessioned2021-04-30T10:41:10Z
dc.date.available2021-04-30T10:41:10Z
dc.date.issued2021-03-06
dc.date.updated2021-04-30T10:03:00Z
dc.description.abstractA multiscale modelling approach to integrate resultful information of particle breakage at distinct scales is presented for quantitative prediction of a milling process. The nanoindentation test of zeolite particles is carried out to provide the deterministic value of mechanical properties, prior to which the Hertz based contact theory is described. The impact pin milling test is made to measure the particle size distribution subject to three rotary speeds. The population balance model composed of selection function and breakage function is developed to predict the varying milling operations based on successful model validation. With the hybrid of theoretical, experimental and numerical avenues, a conceptual multiscale modelling roadmap with complementary strength is proposed. The best available information spanning distinct scales is scoped where the interaction of physical twin and digital twin is highlighted. Global system analysis of the key parameters provides projected confidence in milling performance beyond the existing experimental space.en
dc.description.sponsorshipInnovate UK (Knowledge Transfer Partnership (KTP) Grant No. 158229)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationWang, L. G., Ge, R., Chen, X., Zhou, R. and Chen, H.-M. (2021) 'Multiscale digital twin for particle breakage in milling: From nanoindentation to population balance model', Powder Technology, 386, pp. 247-261. doi: 10.1016/j.powtec.2021.03.005en
dc.identifier.doi10.1016/j.powtec.2021.03.005en
dc.identifier.eissn1873-328X
dc.identifier.endpage261en
dc.identifier.issn0032-5910
dc.identifier.journaltitlePowder Technologyen
dc.identifier.startpage247en
dc.identifier.urihttps://hdl.handle.net/10468/11240
dc.identifier.volume386en
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rights© 2021, Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectDigital twinen
dc.subjectModel validationen
dc.subjectMultiscale millingen
dc.subjectNanoindentationen
dc.subjectParticle breakageen
dc.subjectPopulation balance modelen
dc.titleMultiscale digital twin for particle breakage in milling: From nanoindentation to population balance modelen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0032591021001960-main.pdf
Size:
10.08 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: