Growth of ordered arrangements of one-dimensional germanium nanostructures with controllable crystallinities

Thumbnail Image
10469_cm702923k-file001.pdf(2.83 MB)
Supporting information
Petkov, Nikolay
Birjukovs, Pavels
Phelan, Richard
Morris, Michael A.
Erts, Donats
Holmes, Justin D.
Journal Title
Journal ISSN
Volume Title
American Chemical Society, ACS
Published Version
Research Projects
Organizational Units
Journal Issue
Channelled templates such as anodic alumina membranes (AAMs) can be utilized to host, isolate, and guide the growth of one-dimensional (1D) nanostructures. In this study, we present a method for Au-seeded and confined growth of 1D Ge nanostructures with controlled crystallinities and electrical properties within the channels of AAMs. Our approach combines Au nanoparticle seeded growth of semiconductor nanowires by supercritical fluid−liquid–solid (SFLS) mechanism and the highly anisotropic structure of the aligned channels in AAMs. Au seeds with nanosized dimensions were prepositioned inside channelled substrates, followed by SFLS growth at temperatures slightly higher than the Au/Ge eutectic point. Microscopy and XRD measurements reveal that the 1D nanostructures can be obtained with tuneable and controllable crystallinity, grain size and domain boundaries, ranging from chains of Au-nanoparticles connected through semiconductor Ge nanocrystallities, to Au-seeded Ge single crystalline nanowires. Conditions that control the type of Ge nanostructures are (i) the distribution and size of the Au seeds across the alumina surfaces, (ii) the type of SCF deposition, e.g., batch versus flow-through deposition. Additionally, we present electrical data of the ordered arrays of 1D nanostructures, measured by conductive atomic force microscopy (c-AFM), and contrast the data to that previously obtained for similar systems.
Germanium , Anodic alumina membranes (AAMs) , Channelled substrates , Controllable crystallinities , Atomic force microscopy , Crystal growth , Electric properties , Nanostructures , X ray diffraction , Nanowires , Vapor-liquid-solid VLS
Petkov, N., Birjukovs, P., Phelan, R., Morris, M. A., Erts, D. and Holmes, J. D. (2008) 'Growth of Ordered Arrangements of One-Dimensional Germanium Nanostructures with Controllable Crystallinities', Chemistry of Materials, 20(5), pp. 1902-1908. doi: 10.1021/cm702923k
Link to publisher’s version
© 2008 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see