Emergence of winner-takes-all connectivity paths in random nanowire networks

dc.contributor.authorManning, Hugh G.
dc.contributor.authorNiosi, Fabio
dc.contributor.authorda Rocha, Claudia Gomes
dc.contributor.authorBellew, Allen T.
dc.contributor.authorO’Callaghan, Colin
dc.contributor.authorBiswas, Subhajit
dc.contributor.authorFlowers, Patrick F.
dc.contributor.authorWiley, Benjamin J.
dc.contributor.authorHolmes, Justin D.
dc.contributor.authorFerreira, Mauro S.
dc.contributor.authorBoland, John J.
dc.contributor.funderEuropean Research Councilen
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2019-11-26T05:55:30Z
dc.date.available2019-11-26T05:55:30Z
dc.date.issued2018-08-13
dc.description.abstractNanowire networks are promising memristive architectures for neuromorphic applications due to their connectivity and neurosynaptic-like behaviours. Here, we demonstrate a self-similar scaling of the conductance of networks and the junctions that comprise them. We show this behavior is an emergent property of any junction-dominated network. A particular class of junctions naturally leads to the emergence of conductance plateaus and a “winner-takes-all” conducting path that spans the entire network, and which we show corresponds to the lowest-energy connectivity path. The memory stored in the conductance state is distributed across the network but encoded in specific connectivity pathways, similar to that found in biological systems. These results are expected to have important implications for development of neuromorphic devices based on reservoir computing.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid3219en
dc.identifier.citationManning, H.G., Niosi, F., da Rocha, C.G., Bellew, A.T., O’Callaghan, C., Biswas, S., Flowers, P.F., Wiley, B.J., Holmes, J.D., Ferreira, M.S. and Boland, J.J., 2018. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nature communications, 9(1), (3219). DOI:10.1038/s41467-018-05517-6en
dc.identifier.doi10.1038/s41467-018-05517-6en
dc.identifier.eissn2041-1723
dc.identifier.endpage9en
dc.identifier.issued1en
dc.identifier.journaltitleNature Communicationsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/9229
dc.identifier.volume9en
dc.language.isoenen
dc.publisherNature Publishing Groupen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP2::ERC/321160/EU/Cognitive Networks for Intelligent Materials and Devices/COGNETen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/12/IA/1482/IE/Atom Level Engineering of Material-on-Insulator Devices and Sensors/en
dc.relation.urihttps://www.nature.com/articles/s41467-018-05517-6
dc.rights© The Author(s) 2018en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectNanowire networksen
dc.subjectNeuromorphic applicationsen
dc.subjectNeurosynaptic-like behaviouren
dc.subjectReservoir computingen
dc.titleEmergence of winner-takes-all connectivity paths in random nanowire networksen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 5 of 8
Loading...
Thumbnail Image
Name:
s41467-018-05517-6.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
41467_2018_5517_MOESM1_ESM.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
41467_2018_5517_MOESM2_ESM.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
41467_2018_5517_MOESM3_ESM.pdf
Size:
111.8 KB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
41467_2018_5517_MOESM4_ESM.mov
Size:
3.48 MB
Format:
Video Quicktime
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections