Bilevel optimization by conditional Bayesian optimization
dc.contributor.author | Dogan, Vedat | en |
dc.contributor.author | Prestwich, Steven D. | en |
dc.contributor.editor | Nicosia, Giuseppe | en |
dc.contributor.editor | Ojha, Varun | en |
dc.contributor.editor | La Malfa, Emanuele | en |
dc.contributor.editor | La Malfa, Gabriele | en |
dc.contributor.editor | Pardalos, Panos M. | en |
dc.contributor.editor | Umeton, Renato | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2024-04-09T13:30:01Z | |
dc.date.available | 2024-04-09T13:30:01Z | |
dc.date.issued | 2024-02-16 | en |
dc.description.abstract | Bilevel optimization problems have two decision-makers: a leader and a follower (sometimes more than one of either, or both). The leader must solve a constrained optimization problem in which some decisions are made by the follower. These problems are much harder to solve than those with a single decision-maker, and efficient optimal algorithms are known only for special cases. A recent heuristic approach is to treat the leader as an expensive black-box function, to be estimated by Bayesian optimization. We propose a novel approach called ConBaBo to solve bilevel problems, using a new conditional Bayesian optimization algorithm to condition previous decisions in the bilevel decision-making process. This allows it to extract knowledge from earlier decisions by both the leader and follower. We present empirical results showing that this enhances search performance and that ConBaBo outperforms some top-performing algorithms in the literature on two commonly used benchmark datasets. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Dogan, V. and Prestwich, S. (2024)'Bilevel optimization by conditional Bayesian optimization', in Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P. M. and Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, 14505, pp. 243-258. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_19 | en |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-53969-5_19 | en |
dc.identifier.eissn | 1611-3349 | en |
dc.identifier.endpage | 258 | en |
dc.identifier.isbn | 9783031539688 | en |
dc.identifier.isbn | 9783031539695 | en |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.journaltitle | Lecture Notes in Computer Science | en |
dc.identifier.startpage | 243 | en |
dc.identifier.uri | https://hdl.handle.net/10468/15780 | |
dc.identifier.volume | 14505 | en |
dc.language.iso | en | en |
dc.publisher | Springer Nature Ltd. | en |
dc.relation.ispartof | International Conference on Machine Learning, Optimization, and Data Science (LOD 2023), Grasmere, United Kingdom, 22-26 September 2023 | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3918/IE/Confirm Centre for Smart Manufacturing/ | en |
dc.rights | © 2024, the Authors, under exclusive license to Springer Nature Switzerland AG. For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Bilevel optimization | en |
dc.subject | Conditional Bayesian optimization | en |
dc.subject | Stackelberg Games | en |
dc.subject | Gaussian process | en |
dc.title | Bilevel optimization by conditional Bayesian optimization | en |
dc.type | Conference item | en |
dc.type | Book chapter | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LOD2023___ConBaBo_Paper____Camera_Ready_Version.pdf
- Size:
- 553.75 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: