Solution phase growth and analysis of super-thin zigzag tin selenide nanoribbons

dc.contributor.authorDavitt, Fionán
dc.contributor.authorRahme, Kamil
dc.contributor.authorRaha, Sreyan
dc.contributor.authorGarvey, Shane
dc.contributor.authorRoldan-Gutierrez, Manuel
dc.contributor.authorSingha, Achintya
dc.contributor.authorChang, Shery L. Y.
dc.contributor.authorBiswas, Subhajit
dc.contributor.authorHolmes, Justin D.
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2022-03-28T11:51:56Z
dc.date.available2022-03-28T11:51:56Z
dc.date.issued2022-01-05
dc.date.updated2022-03-25T17:55:08Z
dc.description.abstractTin selenide (SnSe), a highly promising layered material, has been garnering particular interest in recent times due to its significant promise for future energy devices. Herein we report a simple solution-phase approach for growing highly crystalline layered SnSe nanoribbons. Polyvinylpyrrolidone (PVP) was used as a templating agent to selectively passivates the (100) and (001) facets of the SnSe nanoribbons resulting in the unique growth of nanoribbons along their b-axis with a defined zigzag edge state along the sidewalls. The SnSe nanoribbons are few layers thick (similar to 20 layers), with mean widths of similar to 40 nm, and achievable length of >1 mu m. Nanoribbons could be produced in relatively high quantities (>150 mg) in a single batch experiment. The PVP coating also offers some resistance to oxidation, with the removal of the PVP seen to lead to the formation of a SnSe/SnO (x) core-shell structure. The use of non-toxic PVP to replace toxic amines that are typically employed for other 1D forms of SnSe is a significant advantage for sustainable and environmentally friendly applications. Heat transport properties of the SnSe nanoribbons, derived from power-dependent Raman spectroscopy, demonstrate the potential of SnSe nanoribbons as thermoelectric material.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid135601en
dc.identifier.citationDavitt, F., Rahme, K., Raha, S., Garvey, S., Roldan-Gutierrez, M., Singha, A., Chang, S. L. Y., Biswas, S. and Holmes, J. D. (2022) 'Solution phase growth and analysis of super-thin zigzag tin selenide nanoribbons', Nanotechnology, 33(13), 135601(12pp). doi: 10.1088/1361-6528/ac4354en
dc.identifier.doi10.1088/1361-6528/ac4354en
dc.identifier.eissn1361-6528
dc.identifier.endpage12en
dc.identifier.issn0957-4484
dc.identifier.issued13en
dc.identifier.journaltitleNanotechnologyen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/12998
dc.identifier.volume33en
dc.language.isoenen
dc.publisherIOP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/en
dc.rights© 2022, the Authors. Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectPolyol synthesisen
dc.subjectThermal conductivityen
dc.subjectSNSE nanowiresen
dc.subjectRaman spectraen
dc.subjectPerformanceen
dc.subjectTransitionen
dc.subjectNanobeltsen
dc.subjectNanocrystalsen
dc.subjectNanosheetsen
dc.subjectStabilityen
dc.subjectNanoribbonen
dc.subjectTin selenideen
dc.subjectRaman spectroscopyen
dc.subject1d van-der Waals structureen
dc.titleSolution phase growth and analysis of super-thin zigzag tin selenide nanoribbonsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Davitt+et+al_2021_Nanotechnology_10.1088_1361-6528_ac4354.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Author's Original Accepted Version
Loading...
Thumbnail Image
Name:
Davitt_2022_Nanotechnology_33_135601.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: