S-matrix pole symmetries for non-Hermitian scattering Hamiltonians
dc.contributor.author | Simon, M. A. | |
dc.contributor.author | Buendia, A. | |
dc.contributor.author | Kiely, Anthony | |
dc.contributor.author | Mostafazadeh, Ali | |
dc.contributor.author | Muga, Juan Gonzalo | |
dc.contributor.funder | Eusko Jaurlaritza | en |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad, Gobierno de España | en |
dc.contributor.funder | Türkiye Bilimler Akademisi | en |
dc.date.accessioned | 2019-08-21T14:35:31Z | |
dc.date.available | 2019-08-21T14:35:31Z | |
dc.date.issued | 2019-05-13 | |
dc.date.updated | 2019-08-21T14:27:08Z | |
dc.description.abstract | The complex eigenvalues of some non-Hermitian Hamiltonians, e.g., parity-time-symmetric Hamiltonians, come in complex-conjugate pairs. We show that for non-Hermitian scattering Hamiltonians (of a structureless particle in one dimension) possessing one of four certain symmetries, the poles of the S-matrix eigenvalues in the complex momentum plane are symmetric about the imaginary axis, i.e., they are complex-conjugate pairs on the complex-energy plane. This applies even to states which are not bounded eigenstates of the system, i.e., antibound or virtual states, resonances, and antiresonances. The four Hamiltonian symmetries are formulated as the commutation of the Hamiltonian with specific antilinear operators. Example potentials with such symmetries are constructed and their pole structures and scattering properties are calculated. | en |
dc.description.sponsorship | Eusko Jaurlaritza (Basque Country Government (Grant No. IT986-16)); Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO/FEDER,UE (Grant No. FIS2015-67161-P)); Türkiye Bilimler Akademisi (Turkish Academy of Sciences (Türkiye Bilimler Akademisi) through its membership grant) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Simón, M. A., Buendía, A., Kiely, A., Mostafazadeh, A. and Muga, J. G. (2019) 'S-matrix pole symmetries for non-Hermitian scattering Hamiltonians', Physical Review A, 99(5), 052110 (12 pp). doi: 10.1103/PhysRevA.99.052110 | en |
dc.identifier.doi | 10.1103/PhysRevA.99.052110 | en |
dc.identifier.endpage | 12 | en |
dc.identifier.issn | 1050-2947 | |
dc.identifier.issued | 5 | en |
dc.identifier.journaltitle | Physical Review A | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/8371 | |
dc.identifier.volume | 99 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.uri | https://link.aps.org/doi/10.1103/PhysRevA.99.052110 | |
dc.rights | © 2019 American Physical Society | en |
dc.subject | Eigenvalues and eigenfunctions | en |
dc.subject | Poles | en |
dc.subject | Antilinear operators | en |
dc.subject | Complex conjugates | en |
dc.subject | Complex eigenvalues | en |
dc.subject | Imaginary axis | en |
dc.subject | Non-Hermitian Hamiltonians | en |
dc.subject | Pole structures | en |
dc.subject | Scattering property | en |
dc.subject | Structureless particles | en |
dc.subject | Hamiltonians | en |
dc.title | S-matrix pole symmetries for non-Hermitian scattering Hamiltonians | en |
dc.type | Article (peer-reviewed) | en |