Reinventing solid state electronics: harnessing quantum confinement in bismuth thin films

dc.contributor.authorGity, Farzan
dc.contributor.authorAnsari, Lida
dc.contributor.authorLanius, Martin
dc.contributor.authorSchüffelgen, Peter
dc.contributor.authorMussler, Gregor
dc.contributor.authorGrützmacher, Detlev
dc.contributor.authorGreer, James C.
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2018-04-04T09:19:09Z
dc.date.available2018-04-04T09:19:09Z
dc.date.issued2017-03-03
dc.date.updated2018-03-29T10:52:22Z
dc.description.abstractSolid state electronics relies on the intentional introduction of impurity atoms or dopants into a semiconductor crystal and/or the formation of junctions between different materials (heterojunctions) to create rectifiers, potential barriers, and conducting pathways. With these building blocks, switching and amplification of electrical currents and voltages are achieved. As miniaturisation continues to ultra-scaled transistors with critical dimensions on the order of ten atomic lengths, the concept of doping to form junctions fails and forming heterojunctions becomes extremely difficult. Here, it is shown that it is not needed to introduce dopant atoms nor is a heterojunction required to achieve the fundamental electronic function of current rectification. Ideal diode behavior or rectification is achieved solely by manipulation of quantum confinement using approximately 2 nm thick films consisting of a single atomic element, the semimetal bismuth. Crucially for nanoelectronics, this approach enables room temperature operation.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid093111
dc.identifier.citationGity, F., Ansari, L., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D. and Greer, J. C. (2017) 'Reinventing solid state electronics: harnessing quantum confinement in bismuth thin films', Applied Physics Letters, 110(9), 093111 (5pp). doi:10.1063/1.4977431en
dc.identifier.doi10.1063/1.4977431
dc.identifier.endpage5en
dc.identifier.issn0003-6951
dc.identifier.issued9en
dc.identifier.journaltitleApplied Physics Lettersen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/5728
dc.identifier.volume110en
dc.language.isoenen
dc.publisherAIP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/13/IA/1956/IE/SMALL: Semi-Metal ALL-in-One Technologies/en
dc.relation.uriftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-110-027709
dc.rights© 2017, the Authors. Published by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and AIP Publishing. The following article appeared in F. Gity et al., Applied Physics Letters, 110(9), 093111 (5pp) and may be found at http://dx.doi.org/10.1063/1.4977431en
dc.subjectBismuthen
dc.subjectQuantum confinementen
dc.subjectRoom temperatureen
dc.titleReinventing solid state electronics: harnessing quantum confinement in bismuth thin filmsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
4089.pdf
Size:
875.37 KB
Format:
Adobe Portable Document Format
Description:
Published Version
Loading...
Thumbnail Image
Name:
SM Bi diode APL 2016.pdf
Size:
655.35 KB
Format:
Adobe Portable Document Format
Description:
Supporting Material
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: