On the use of DFT+U to describe the electronic structure of TiO2 nanoparticles: (TiO2)35 as a case study

dc.check.date2021-06-22
dc.check.infoAccess to this article is restricted until 12 months after publication by request of the publisher.en
dc.contributor.authorMorales-Garcí­a, Ángel
dc.contributor.authorRhatigan, Stephen
dc.contributor.authorNolan, Michael
dc.contributor.authorIllas, Francesc
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidadesen
dc.contributor.funderConsejo Superior de Investigaciones Científicasen
dc.contributor.funderGeneralitat de Catalunyaen
dc.contributor.funderInstitució Catalana de Recerca i Estudis Avançatsen
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderHorizon 2020en
dc.contributor.funderEuropean Cooperation in Science and Technologyen
dc.date.accessioned2020-12-14T14:21:38Z
dc.date.available2020-12-14T14:21:38Z
dc.date.issued2020-06-22
dc.date.updated2020-11-25T09:53:40Z
dc.description.abstractOne of the main drawbacks in the density functional theory (DFT) formalism is the underestimation of the energy gaps in semiconducting materials. The combination of DFT with an explicit treatment of the electronic correlation with a Hubbard-like model, known as the DFT+U method, has been extensively applied to open up the energy gap in materials. Here, we introduce a systematic study where the selection of the U parameter is analyzed considering two different basis sets: plane-waves and numerical atomic orbitals (NAOs), together with different implementations for including U, to investigate the structural and electronic properties of a well-defined bipyramidal (TiO2)35 nanoparticle. This study reveals, as expected, that a certain U value can reproduce the experimental value for the energy gap. However, there is a high dependence on the choice of basis set and on the U parameter employed. The present study shows that the linear combination of the NAO basis functions, as implemented in Fritz Haber Institute ab initio molecular simulation (FHI-aims), requires, requires a lower U value than the simplified rotationally invariant approach, as implemented in the Vienna ab initio simulation package (VASP). Therefore, the transfer of U values between codes is unfeasible and not recommended, demanding initial benchmark studies for the property of interest as a reference to determine the appropriate value of U.en
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (RTI2018-095460-B-I00; Juan de la Cierva postdoctoral Grant No. IJCI-2017-31979); Consejo Superior de Investigaciones Científicas (María de Maeztu No. MDM-2017-0767 grant); Generalitat de Catalunya (No. 2017SGR13); Institució Catalana de Recerca i Estudis Avançats (Academia Award for Excellence in University Research 2015); Science Foundation Ireland (SFI/16/M-ERA/3418 (RATOCAT); European Cooperation in Science and Technology (COST Action No. CA18234)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid244107en
dc.identifier.citationMorales-Garcí­a, Á, Rhatigan, S., Nolan, M. and Illas, F. (2020) 'On the use of DFT+U to describe the electronic structure of TiO2 nanoparticles: (TiO2)35 as a case study', Journal of Chemical Physics, 152(24), 244107 (8pp). doi: 10.1063/5.0012271en
dc.identifier.doi10.1063/5.0012271en
dc.identifier.eissn1089-7690
dc.identifier.endpage8en
dc.identifier.issn0021-9606
dc.identifier.issued24en
dc.identifier.journaltitleChemical Physicsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/10835
dc.identifier.volume152en
dc.language.isoenen
dc.publisherAmerican Institute of Physicsen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::ERA-NET-Cofund/685451/EU/ERA-NET for materials research and innovation/M-ERA.NET 2en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::ERA-NET-Cofund/685451/EU/ERA-NET for materials research and innovation/M-ERA.NET 2en
dc.rights© 2020, the Authors. Published under license by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author(s) and AIP Publishing. This article appeared as: Morales-Garcí­a, Á, Rhatigan, S., Nolan, M. and Illas, F. (2020) 'On the use of DFT+U to describe the electronic structure of TiO2 nanoparticles: (TiO2)35 as a case study', Journal of Chemical Physics, 152(24), 244107 (8pp), doi: 10.1063/5.0012271, and may be found at https://doi.org/10.1063/5.0012271en
dc.subjectDensity functional theoryen
dc.subjectDFTen
dc.subjectEnergy gapsen
dc.subjectSemiconducting materialsen
dc.titleOn the use of DFT+U to describe the electronic structure of TiO2 nanoparticles: (TiO2)35 as a case studyen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5.0012271.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: