2D and 3D vanadium oxide inverse opals and hollow sphere arrays
dc.contributor.author | Armstrong, Eileen | |
dc.contributor.author | Osiak, Michal J. | |
dc.contributor.author | Geany, Hugh | |
dc.contributor.author | Glynn, Colm | |
dc.contributor.author | O'Dwyer, Colm | |
dc.contributor.funder | Irish Research Council | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Seventh Framework Programme | en |
dc.date.accessioned | 2018-05-15T13:14:42Z | |
dc.date.available | 2018-05-15T13:14:42Z | |
dc.date.issued | 2014-10-24 | |
dc.date.updated | 2018-05-03T11:00:32Z | |
dc.description.abstract | High quality 2D and 3D inverse opals and hollow sphere arrays of vanadium oxide are grown on conductive substrates from colloidal polymer sphere templates formed by electrophoretic deposition or surfactant-assisted dip-coating. Inverse opals (IOs) are formed using variants of solution drop-casting, N2-gun assisted infiltration and high-rate (200 mm min−1) iterative dip-coating methods. Through Raman scattering, transmission electron microscopy and optical diffraction, we show how the oxide phase, crystallinity and structure are inter-related and controlled. Opal template removal steps are demonstrated to determine the morphology, crystallinity and phase of the resulting 2D and 3D IO structures. The ability to form high quality 2D IOs is also demonstrated using UV Ozone removal of PMMA spheres. Rapid hydrolysis of the alkoxide precursor allows the formation of 2D arrays of crystalline hollow spheres of V2O5 by utilizing over-filling during iterative dip-coating. The methods and crystallinity control allow 2D and 3D hierarchically structured templates and inverse opal vanadium oxides directly on conductive surfaces. This can be extended to a wide range of other functional porous materials for energy storage and batteries, electrocatalysis, sensing, solar cell materials and diffractive optical coatings. | en |
dc.description.sponsorship | Irish Research Council (RS/2010/2920, RS/2010/2170, RS/2011/797); | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Armstrong, E., Osiak, M., Geaney, H., Glynn, C. and O'Dwyer, C. (2014) '2D and 3D vanadium oxide inverse opals and hollow sphere arrays', CrystEngComm, 16(47), pp. 10804-10815. doi: 10.1039/C4CE01797H | en |
dc.identifier.doi | 10.1039/C4CE01797H | |
dc.identifier.endpage | 10815 | en |
dc.identifier.issn | 1466-8033 | |
dc.identifier.issued | 47 | en |
dc.identifier.journaltitle | Crystengcomm | en |
dc.identifier.startpage | 10804 | en |
dc.identifier.uri | https://hdl.handle.net/10468/6111 | |
dc.identifier.volume | 16 | en |
dc.language.iso | en | en |
dc.publisher | Royal Society of Chemistry (RSC) | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP1::NMP/314508/EU/STable high-capacity lithium-Air Batteries with Long cycle life for Electric cars/STABLE | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Short Term Travel Fellowship (STTF)/07/SK/B1232a - STTF 11/IE/Optical Probing of Phase Changes in Inverse opal Photonic Crystal Li-on Battery Electrodes/ | en |
dc.relation.uri | http://pubs.rsc.org/en/Content/ArticleLanding/2014/CE/C4CE01797H#!divAbstract | |
dc.rights | © The Royal Society of Chemistry 2014 | en |
dc.subject | Colloidal photonic crystals | en |
dc.subject | Lithium-ion batteries | en |
dc.subject | Thin-films | en |
dc.subject | Electrophoretic deposition | en |
dc.subject | Energy-storage | en |
dc.subject | Large-area | en |
dc.subject | Pentoxide | en |
dc.subject | Nanotubes | en |
dc.subject | Intercalation | en |
dc.subject | Electrodes | en |
dc.title | 2D and 3D vanadium oxide inverse opals and hollow sphere arrays | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Revised_V2O5_IO_Sythesis_Paper_FinalClean.pdf
- Size:
- 2.03 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: