2D and 3D vanadium oxide inverse opals and hollow sphere arrays

dc.contributor.authorArmstrong, Eileen
dc.contributor.authorOsiak, Michal J.
dc.contributor.authorGeany, Hugh
dc.contributor.authorGlynn, Colm
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderIrish Research Councilen
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderSeventh Framework Programmeen
dc.date.accessioned2018-05-15T13:14:42Z
dc.date.available2018-05-15T13:14:42Z
dc.date.issued2014-10-24
dc.date.updated2018-05-03T11:00:32Z
dc.description.abstractHigh quality 2D and 3D inverse opals and hollow sphere arrays of vanadium oxide are grown on conductive substrates from colloidal polymer sphere templates formed by electrophoretic deposition or surfactant-assisted dip-coating. Inverse opals (IOs) are formed using variants of solution drop-casting, N2-gun assisted infiltration and high-rate (200 mm min−1) iterative dip-coating methods. Through Raman scattering, transmission electron microscopy and optical diffraction, we show how the oxide phase, crystallinity and structure are inter-related and controlled. Opal template removal steps are demonstrated to determine the morphology, crystallinity and phase of the resulting 2D and 3D IO structures. The ability to form high quality 2D IOs is also demonstrated using UV Ozone removal of PMMA spheres. Rapid hydrolysis of the alkoxide precursor allows the formation of 2D arrays of crystalline hollow spheres of V2O5 by utilizing over-filling during iterative dip-coating. The methods and crystallinity control allow 2D and 3D hierarchically structured templates and inverse opal vanadium oxides directly on conductive surfaces. This can be extended to a wide range of other functional porous materials for energy storage and batteries, electrocatalysis, sensing, solar cell materials and diffractive optical coatings.en
dc.description.sponsorshipIrish Research Council (RS/2010/2920, RS/2010/2170, RS/2011/797);en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationArmstrong, E., Osiak, M., Geaney, H., Glynn, C. and O'Dwyer, C. (2014) '2D and 3D vanadium oxide inverse opals and hollow sphere arrays', CrystEngComm, 16(47), pp. 10804-10815. doi: 10.1039/C4CE01797Hen
dc.identifier.doi10.1039/C4CE01797H
dc.identifier.endpage10815en
dc.identifier.issn1466-8033
dc.identifier.issued47en
dc.identifier.journaltitleCrystengcommen
dc.identifier.startpage10804en
dc.identifier.urihttps://hdl.handle.net/10468/6111
dc.identifier.volume16en
dc.language.isoenen
dc.publisherRoyal Society of Chemistry (RSC)en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP1::NMP/314508/EU/STable high-capacity lithium-Air Batteries with Long cycle life for Electric cars/STABLEen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Short Term Travel Fellowship (STTF)/07/SK/B1232a - STTF 11/IE/Optical Probing of Phase Changes in Inverse opal Photonic Crystal Li-on Battery Electrodes/en
dc.relation.urihttp://pubs.rsc.org/en/Content/ArticleLanding/2014/CE/C4CE01797H#!divAbstract
dc.rights© The Royal Society of Chemistry 2014en
dc.subjectColloidal photonic crystalsen
dc.subjectLithium-ion batteriesen
dc.subjectThin-filmsen
dc.subjectElectrophoretic depositionen
dc.subjectEnergy-storageen
dc.subjectLarge-areaen
dc.subjectPentoxideen
dc.subjectNanotubesen
dc.subjectIntercalationen
dc.subjectElectrodesen
dc.title2D and 3D vanadium oxide inverse opals and hollow sphere arraysen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Revised_V2O5_IO_Sythesis_Paper_FinalClean.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: