Geometry and regularity of moving punctures

dc.contributor.authorHannam, Mark
dc.contributor.authorHusa, Sascha
dc.contributor.authorPollney, Denis
dc.contributor.authorBruegmann, Bernd
dc.contributor.authorÓ Murchadha, Niall
dc.date.accessioned2017-09-08T09:15:48Z
dc.date.available2017-09-08T09:15:48Z
dc.date.issued2007
dc.description.abstractSignificant advances in numerical simulations of Black holes binaries have recently been achieved using the puncture method. We examine how and why this method works by evolving a single black hole. The coordinate singularity and hence the geometry at the puncture are found to change during evolution, from representing an asymptotically flat end to being a cylinder. We construct an analytic solution for the stationary state of a black hole in spherical symmetry that matches the numerical result and demonstrates that the evolution is not dominated by artefacts at the puncture but indeed finds the analytical result.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid241102
dc.identifier.citationHannam, M., Husa, S., Pollney, D., Brügmann, B. and Ó Murchadha, N. (2007) 'Geometry and regularity of moving punctures', Physical Review Letters, 99(24), 241102 (4pp). doi: 10.1103/PhysRevLett.99.241102en
dc.identifier.doi10.1103/PhysRevLett.99.241102
dc.identifier.issn0031-9007
dc.identifier.issued24
dc.identifier.journaltitlePhysical Review Lettersen
dc.identifier.urihttps://hdl.handle.net/10468/4645
dc.identifier.volume99
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relation.urihttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.241102
dc.rights© 2007, American Physical Societyen
dc.subjectBlack holesen
dc.subjectEvolutionen
dc.subjectSlicesen
dc.titleGeometry and regularity of moving puncturesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3652.pdf
Size:
147.58 KB
Format:
Adobe Portable Document Format
Description:
Published Version