On closed finite gap curves in spaceforms I

dc.contributor.authorKlein, Sebastian
dc.contributor.authorKilian, Martin
dc.contributor.funderDeutsche Forschungsgemeinschaft
dc.date.accessioned2023-10-10T09:47:31Z
dc.date.available2023-10-04T14:00:28Zen
dc.date.available2023-10-10T09:47:31Z
dc.date.issued2020-03en
dc.date.updated2023-10-04T13:00:35Zen
dc.description.abstractWe show that the spaces of closed finite gap curves in R3 and S3 are dense with respect to the Sobolev W2,2-norm in the spaces of closed curves in R3 respectively S3.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (Grant 414903103)
dc.description.statusPeer revieweden
dc.description.versionPublished Version
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid011
dc.identifier.citationKlein, S. and Kilian, M. (2020) 'On closed finite gap curves in spaceforms I', Symmetry Integrability and Geometry-Methods and Applications: SIGMA, 16 (2020), 011 (29 pp).
dc.identifier.eissn1815-0659
dc.identifier.endpage29
dc.identifier.journaltitleSymmetry Integrability and Geometry-Methods and Applications: SIGMA
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/15090
dc.identifier.volume16
dc.language.isoenen
dc.publisherNational Academy of Science of Ukraine
dc.rights© 2020, the Authors. This content is shared under the terms of the Creative Commons Attribution-ShareAlike License.
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/deed.en
dc.subjectClosed finite gap curves
dc.subjectIntegrable systems
dc.subjectNonlinear Schrödinger equation
dc.titleOn closed finite gap curves in spaceforms Ien
dc.typeArticle (peer-reviewed)
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sigma20-011.pdf
Size:
517.11 KB
Format:
Adobe Portable Document Format
Description:
Published Version