Using machine learning classifiers in SAT branching
dc.contributor.author | Bergin, Ruth Helen | en |
dc.contributor.author | Dalla, Marco | en |
dc.contributor.author | Visentin, Andrea | en |
dc.contributor.author | O'Sullivan, Barry | en |
dc.contributor.author | Provan, Gregory | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2023-11-03T14:33:41Z | |
dc.date.available | 2023-11-03T14:33:41Z | |
dc.date.issued | 2023-07-02 | en |
dc.description.abstract | The Boolean Satisfiability Problem (SAT) can be framed as a binary classification task. Recently, numerous machine and deep learning techniques have been successfully deployed to predict whether a CNF has a solution. However, these approaches do not provide a variables assignment when the instance is satisfiable and have not been used as part of SAT solvers. In this work, we investigate the possibility of using a machine-learning SAT/UNSAT classifier to assign a truth value to a variable. A heuristic solver can be created by iteratively assigning one variable to the value that leads to higher predicted satisfiability. We test our approach with and without probing features and compare it to a heuristic assignment based on the variable's purity. We consider as objective the maximisation of the number of literals fixed before making the CNF unsatisfiable. The preliminary results show that this iterative procedure can consistently fix variables without compromising the formula's satisfiability, finding a complete assignment in almost all test instances. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Bergin, R.H., Dalla, M., Visentin, A., O’Sullivan, B. and Provan, G. (2023) ‘Using machine learning classifiers in SAT branching’, Sixteenth International Symposium on Combinatorial Search, Proceedings of the International Symposium on Combinatorial Search, 16(1), pp. 169–170, https://doi.org/10.1609/socs.v16i1.27298 | en |
dc.identifier.doi | https://doi.org/10.1609/socs.v16i1.27298 | en |
dc.identifier.endpage | 170 | en |
dc.identifier.isbn | 978-1-57735-882-4 | en |
dc.identifier.issn | 2832-9163 | en |
dc.identifier.issn | 2832-9171 | en |
dc.identifier.issued | 1 | en |
dc.identifier.startpage | 169 | en |
dc.identifier.uri | https://hdl.handle.net/10468/15191 | |
dc.identifier.volume | 16 | en |
dc.language.iso | en | en |
dc.publisher | The AAAI Press | en |
dc.relation.ispartof | Proceedings of the International Symposium on Combinatorial Search | en |
dc.relation.ispartof | Sixteenth International Symposium on Combinatorial Search | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 2/12/RC/2289-P2s/IE/INSIGHT Phase 2/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Centres for Research Training Programme::Data and ICT Skills for the Future/18/CRT/6223/IE/SFI Centre for Research Training in Artificial Intelligence/ | en |
dc.rights | © 2023, Association for the Advancement of ArtificialIntelligence (www.aaai.org) | en |
dc.subject | Search in Boolean satisfiability | en |
dc.subject | Machine and deep learning in search | en |
dc.subject | Random vs systematic search strategy selection | en |
dc.subject | Time | en |
dc.subject | Memory | en |
dc.subject | Solution quality trade-offs | en |
dc.subject | Combinatorial Search | en |
dc.subject | Artificial intelligence | en |
dc.subject | Machine learning | en |
dc.subject | Search strategy selection | en |
dc.subject | Boolean satisfiability problem (SAT) | en |
dc.title | Using machine learning classifiers in SAT branching | en |
dc.type | Conference item | en |
oaire.citation.issue | 1 | en |
oaire.citation.volume | 16 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- SOCS2023___ML_for_SAT_Branching___AV.pdf
- Size:
- 123.25 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: