Spin waves in exchange spring nanoheterostructured amorphous/nanocrystalline films

dc.contributor.authorSamanta, Arindamen
dc.contributor.authorGubbiotti, Gianlucaen
dc.contributor.authorRoy, Saibalen
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderMinistero dell’Istruzione, dell’Università e della Ricercaen
dc.date.accessioned2023-09-06T14:18:59Z
dc.date.available2023-09-06T14:18:59Z
dc.date.issued2023-06-29en
dc.description.abstractWe investigate the structural, static, and dynamic magnetic properties of exchange spring (ES) nanohetero-structured, stress-free, optically smooth films of amorphous/nanocrystalline Co-rich cobalt phosphorous (CoP) prepared by electrodeposition technique at room temperature. Static magnetic measurement reveals different hysteresis loop structures of the thin films — evolution from the low coercivity non-ES loop to the staircase-ES loop, giving rise to multiple coercivities for relatively higher thickness films. The first-order reversal curve (FORC) distributions demonstrate the different reversal mechanisms present in the samples and confirm the non-ES and ES natures of the films. The field-dependent Brillouin light scattering (BLS) spectra of the ES thin film unveil two well-resolved spin wave peaks associated with the bulk modes (B) and the so-called Damon-Eshbach (DE) surface spin wave modes (S) while that for non-ES low coercivity sample show a doublet of modes below a certain value of the applied field. Observation of the S mode only on one side of the measured spectra depends on the direction of the external magnetic field due to the nonreciprocal character of the S wave in the micrometer thickness of the investigated films. The external magnetic field-dependent BLS spectra yield an almost linear dependence of the mode frequencies versus the magnetic field intensity. Studied BLS measurements demonstrate the evolution of the ES structure in 5.7−μm-thick nanohetero-structured CoP film compared to the 1.4−μm-thick non-ES sample. Additionally, the increase in the interfacial exchange energy value (JESI−10.12erg/cm2) in the 5.7μm film compared to that (Jnon-ESI−3.68erg/cm2) of 1.4−μm film (calculated from corresponding asymmetric peak fittings to the measured BLS spectra) reduces the interfacial exchange energy ratio (Jnon-ESI/JESI) below unity, confirming the enhanced strength of the exchange coupling in the developed ES film.en
dc.description.sponsorshipScience Foundation Ireland (Grant No. SFI-21/FFP-A/10003-MERIT); Ministero dell’Istruzione, dell’Università e della Ricerca (National Innovation Ecosystem Grant No. ECS00000041 – VITALITY; PRIN-2020 Project Code: 2020LWPKH7)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid214449en
dc.identifier.citationSamanta, A., Gubbiotti, G. and Roy, S. (2023) ‘Spin waves in exchange spring nanoheterostructured amorphous/nanocrystalline films’, Physical Review B, 107(21), 214449 (11pp). doi: 10.1103/PhysRevB.107.214449en
dc.identifier.doi10.1103/physrevb.107.214449en
dc.identifier.eissn1550-235Xen
dc.identifier.endpage11en
dc.identifier.issn1098-0121en
dc.identifier.issued21en
dc.identifier.journaltitlePhysical Review Ben
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/14930
dc.identifier.volume107en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rights© 2023, American Physical Society. All rights reserved.en
dc.subjectExchange springen
dc.subjectInterfacial exchange energy ratioen
dc.subjectNanoheterostructured amorphous/nanocrystalline filmsen
dc.titleSpin waves in exchange spring nanoheterostructured amorphous/nanocrystalline filmsen
dc.typeArticle (peer-reviewed)en
oaire.citation.issue21en
oaire.citation.volume107en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.107.214449.pdf
Size:
3.57 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: