Linking precursor alterations to nanoscale structure and optical transparency in polymer assisted fast-rate dip-coating of vanadium oxide thin films

dc.contributor.authorGlynn, Colm
dc.contributor.authorCreedon, Donal
dc.contributor.authorGeaney, Hugh
dc.contributor.authorArmstrong, Eileen
dc.contributor.authorCollins, Timothy W.
dc.contributor.authorMorris, Michael A.
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderIrish Research Councilen
dc.contributor.funderSeventh Framework Programmeen
dc.contributor.funderScience Foundation Irelanden
dc.description.abstractSolution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness.en
dc.description.sponsorshipIrish Research Council ((Awards RS/2011/797 and RS/2010/2920) New Foundations Award); Science Foundation Ireland (National Access Programme (NAP 417))en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.identifier.citationGlynn, C., Creedon, D., Geaney, H., Armstrong, E., Collins, T., Morris, M. A. and Dwyer, C. O. (2015) 'Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films', Scientific Reports, 5, 11574 (15pp). doi: 10.1038/srep11574en
dc.identifier.journaltitleScientific Reportsen
dc.publisherSpringer Natureen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP1::NMP/314508/EU/STable high-capacity lithium-Air Batteries with Long cycle life for Electric cars/STABLEen
dc.rights© The Author(s) 2015. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
dc.subjectElectronic and spintronic devicesen
dc.subjectPhotonics and device physicsen
dc.subjectThin filmsen
dc.titleLinking precursor alterations to nanoscale structure and optical transparency in polymer assisted fast-rate dip-coating of vanadium oxide thin filmsen
dc.typeArticle (peer-reviewed)en
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
2.41 MB
Adobe Portable Document Format
Published version
License bundle
Now showing 1 - 1 of 1
Thumbnail Image
2.71 KB
Item-specific license agreed upon to submission