Rhenium-doped MoS2 films

dc.check.date2018-11-14
dc.check.infoAccess to this article is restricted until 12 months after publication by request of the publisher.en
dc.contributor.authorHallam, Toby
dc.contributor.authorMonaghan, Scott
dc.contributor.authorGity, Farzan
dc.contributor.authorAnsari, Lida
dc.contributor.authorSchmidt, Michael
dc.contributor.authorDowning, Clive
dc.contributor.authorCullen, Conor P.
dc.contributor.authorNicolosi, Valeria
dc.contributor.authorHurley, Paul K.
dc.contributor.authorDuesberg, Georg S.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Commissionen
dc.contributor.funderHorizon 2020en
dc.contributor.funderIntel Corporationen
dc.date.accessioned2017-11-24T16:30:18Z
dc.date.available2017-11-24T16:30:18Z
dc.date.issued2017-11-14
dc.date.updated2017-11-24T12:05:05Z
dc.description.abstractTailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (Re). High-Resolution Scanning Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy are used to identify Re in interstitial and lattice sites of the MoS2 structure. Hall-effect measurements confirm the electron donating influence of Re in MoS2, while the nominally undoped films exhibit a net p-type doping. Density functional theory (DFT) modelling indicates that Re on Mo sites is the origin of the n-type doping, whereas S-vacancies have a p-type nature, providing an explanation for the p-type behaviour of nominally undoped MoS2 films.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationHallam, T., Monaghan, S., Gity, F., Ansari, L., Schmidt, M., Downing, C., Cullen, C. P., Nicolosi, V., Hurley, P. K. and Duesberg, G. S. (2017) 'Rhenium-doped MoS2 films', Applied Physics Letters, 111(20), 203101 (5 pp). doi: 10.1063/1.4995220en
dc.identifier.doi10.1063/1.4995220
dc.identifier.endpage203101-5en
dc.identifier.issn0003-6951
dc.identifier.issued20en
dc.identifier.journaltitleApplied Physics Lettersen
dc.identifier.startpage203101-1en
dc.identifier.urihttps://hdl.handle.net/10468/5091
dc.identifier.volume111en
dc.language.isoenen
dc.publisherAIP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3131/IE/Investigating Emerging 2D Semiconductor Technology/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::SGA-RIA/696656/EU/Graphene-based disruptive technologies/GrapheneCore1en
dc.relation.urihttp://aip.scitation.org/doi/abs/10.1063/1.4995220
dc.rights© 2017, AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters 2017 111:20 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.4995220en
dc.subjectEnergy dispersive x-ray spectroscopyen
dc.subjectElectron microscopyen
dc.subjectDensity functional theoryen
dc.subjectHall effecten
dc.subjectInterstitialsen
dc.subjectMolybdenum compoundsen
dc.subjectRheniumen
dc.subjectScanning-transmission electron microscopyen
dc.subjectSemiconductor dopingen
dc.subjectSemiconductor materialsen
dc.subjectSemiconductor thin filmsen
dc.subjectVacancies (crystal)en
dc.subjectX-ray chemical analysisen
dc.titleRhenium-doped MoS2 filmsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4245.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: