CO2 and water activation on ceria nanocluster modified TiO2 rutile (110)

dc.check.date2019-04-27
dc.check.infoAccess to this article is restricted until 12 months after publication by request of the publisher.en
dc.contributor.authorRhatigan, Stephen
dc.contributor.authorNolan, Michael
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderHorizon 2020en
dc.contributor.funderEuropean Cooperation in Science and Technologyen
dc.date.accessioned2018-05-09T08:51:28Z
dc.date.available2018-05-09T08:51:28Z
dc.date.issued2018
dc.date.updated2018-05-08T15:31:17Z
dc.description.abstractSurface modification of TiO2 with metal oxide nanoclusters is a strategy for the development of new photocatalyst materials. We have studied modification of TiO2 rutile (110) with ceria nanoclusters using density functional theory corrected for on-site Coulomb interactions (DFT+U). We focus on the impact of surface modification on key properties governing the performance of photocatalysts, including light absorption, photoexcited charge carrier separation, reducibility and surface reactivity. Our results show that adsorption of the CeO2 nanoclusters, with compositions Ce5O10 and Ce6O12, is favourable at the rutile (110) surface and that the nanocluster–surface composites favour non-stoichiometry in the adsorbed ceria so that reduced Ce ions will be present in the ground state. The presence of reduced Ce ions and low coordinated O sites in the nanocluster lead to the emergence of energy states in the energy gap of the TiO2 host, which potentially enhance the visible light response. We show, through an examination of oxygen vacancy formation, that the composite systems are reducible with moderate energy costs. Photoexcited electrons and holes localize on Ce and O sites of the supported nanoclusters. The interaction of CO2 and H2O is favourable at multiple sites of the reduced CeOx–TiO2 composite surfaces. CO2 adsorbs and activates, while H2O spontaneously dissociates at oxygen vacancy sites.en
dc.description.sponsorshipEuropean Cooperation in Science and Technology (COST Action CM1104 “Reducible Metal Oxides, Structure and Function”)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRhatigan, S. and Nolan, M. (2018) 'CO2 and water activation on ceria nanocluster modified TiO2 rutile (110)', Journal of Materials Chemistry A, In Press, doi: 10.1039/C8TA01270Aen
dc.identifier.doi10.1039/C8TA01270A
dc.identifier.endpage14en
dc.identifier.issn2050-7488
dc.identifier.journaltitleJournal of Materials Chemistry Aen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/6042
dc.language.isoenen
dc.publisherRoyal Society of Chemistry (RSC)en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::ERA-NET-Cofund/685451/EU/ERA-NET for materials research and innovation/M-ERA.NET 2en
dc.relation.urihttp://dx.doi.org/10.1039/C8TA01270A
dc.rights© The Royal Society of Chemistry 2018en
dc.subjectNanoclustersen
dc.subjectTiO2en
dc.subjectEnergy statesen
dc.subjectEnergy gapen
dc.subjectAbsorptionen
dc.titleCO2 and water activation on ceria nanocluster modified TiO2 rutile (110)en
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5567_J_Mchem_A_CeO2-TiO2_SR.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: