A hybrid Bayesian approach for pessimistic bilevel problems with a new formulation

Loading...
Thumbnail Image
Files
MODeM2024_paper_21.pdf(232.9 KB)
Accepted Version
Date
2024
Authors
Dogan, Vedat
Prestwich, Steven D.
O'Sullivan, Barry
Journal Title
Journal ISSN
Volume Title
Publisher
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
In many real-world problems, finding the optimal decision for a decision-maker depends on another decision-maker’s response, and it is called bilevel optimization in mathematical programming. It contains two levels of optimization problems while one appears as a constraint of another one called follower and leader, respectively. In many real-world scenarios, the lower level has multiple global optima and the upper level needs to make worst-case assumptions about the decision of the lower level, called the pessimistic case of the bilevel problem. Various approaches have been implemented over the years to solve generic bilevel problems, but few of them could be extended to pessimistic cases. In this short paper, we first propose a new formulation for the pessimistic case. In this way, we take advantage of the hierarchical structure of bilevel problems to make the results more accurate for pessimistic cases. Then, we implement a black-box approach to solve the pessimistic upper level problem to decrease the necessary function evaluations. The performance of the problem is examined by solving a test benchmark problem from the literature.
Description
Keywords
Bayesian approach , Hybrid , Pessimistic bilevel problems , Black-box approach
Citation
Dogan V.; Preswich S. and O'Sullivan B. (2024) 'A hybrid Bayesian approach for pessimistic bilevel problems with a new formulation', 27th European Conference on Artificial Intelligence (ECAI 2024) , 19-24 October, Santiago de Compostela, Spain.
Link to publisher’s version
Copyright
© 2024 The Authors.