Electron transport properties of sub-3-nm diameter copper nanowires

dc.contributor.authorJones, Sarah L. T.
dc.contributor.authorSanchez-Soares, Alfonso
dc.contributor.authorPlombon, John J.
dc.contributor.authorKaushik, Ananth P.
dc.contributor.authorNagle, Roger E.
dc.contributor.authorClarke, James S.
dc.contributor.authorGreer, James C.
dc.contributor.funderIntel Corporationen
dc.contributor.funderIrish Research Councilen
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderQuantumWise A/S, Denmarken
dc.date.accessioned2017-01-17T10:03:04Z
dc.date.available2017-01-17T10:03:04Z
dc.date.issued2015-09-11
dc.date.updated2017-01-14T21:17:35Z
dc.description.abstractDensity functional theory and density functional tight binding are applied to model electron transport in copper nanowires of approximately 1- and 3-nm diameters with varying crystal orientation and surface termination. The copper nanowires studied are found to be metallic irrespective of diameter, crystal orientation, and/or surface termination. Electron transmission is highly dependent on crystal orientation and surface termination. Nanowires oriented along the [110] crystallographic axis consistently exhibit the highest electron transmission while surface oxidized nanowires show significantly reduced electron transmission compared to unterminated nanowires. Transmission per unit area is calculated in each case; for a given crystal orientation we find that this value decreases with diameter for unterminated nanowires but is largely unaffected by diameter in surface oxidized nanowires for the size regime considered. Transmission pathway plots show that transmission is larger at the surface of unterminated nanowires than inside the nanowire and that transmission at the nanowire surface is significantly reduced by surface oxidation. Finally, we present a simple model which explains the transport per unit area dependence on diameter based on transmission pathways results.en
dc.description.sponsorshipIntel Corporation (Intel-Tyndall research collaboration sponsored by Intel Components Research); Irish Research Council (Postgraduate scholarship); QuantamWise A/S (support and access to the QUANTUMWISE simulation software); Science Foundation Ireland (SFI Investigator program, Grant No. 13/IA/1956.)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJones, S. L. T., Sanchez-Soares, A., Plombon, J. J., Kaushik, A. P., Nagle, R. E., Clarke, J. S. and Greer, J. C. (2015) 'Electron transport properties of sub-3-nm diameter copper nanowires', Physical Review B, 92(11), pp. 115413. doi:10.1103/PhysRevB.92.115413en
dc.identifier.doi10.1103/PhysRevB.92.115413
dc.identifier.endpage115413-10en
dc.identifier.journaltitlePhysical Review Ben
dc.identifier.startpage115413-1en
dc.identifier.urihttps://hdl.handle.net/10468/3473
dc.identifier.volume92en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rights© 2015 American Physical Societyen
dc.subjectResistivityen
dc.subjectSurfaceen
dc.subjectCurrentsen
dc.subjectFilmsen
dc.subjectModelen
dc.titleElectron transport properties of sub-3-nm diameter copper nanowiresen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.92.115413.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: