Properly embedded minimal annuli in S2 x R
dc.contributor.author | Hauswirth, L. | |
dc.contributor.author | Kilian, Martin | |
dc.contributor.author | Schmidt, M. U. | |
dc.date.accessioned | 2023-10-10T10:40:23Z | |
dc.date.available | 2023-10-04T13:57:06Z | en |
dc.date.available | 2023-10-10T10:40:23Z | |
dc.date.issued | 2020-09-23 | |
dc.date.updated | 2023-10-04T12:57:10Z | en |
dc.description.abstract | We prove that every properly embedded minimal annulus in S2 × R is foliated by circles. We show that such minimal annuli are given by periodic harmonic maps C → S2 of finite type. Such harmonic maps are parameterized by spectral data, and we show that continuous deformations of the spectral data preserve the embeddedness of the corresponding annuli. A curvature estimate of Meeks and Rosenberg is used to show that each connected component of spectral data of embedded minimal annuli contains a maximum of the flux of the third coordinate. A classification of these maxima allows us to identify the spectral data of properly embedded minimal annuli with the spectral data of minimal annuli foliated by circles. | |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | xyaa005 | |
dc.identifier.citation | Hauswirth, L., Kilian, M. and Schmidt, M. U. (2020) 'Properly embedded minimal annuli in S2×R', Journal of Integrable Systems, 5(1), xyaa005 (37pp). doi: 10.1093/integr/xyaa005 | |
dc.identifier.doi | 10.1093/integr/xyaa005 | |
dc.identifier.eissn | 2058-5985 | |
dc.identifier.endpage | 37 | |
dc.identifier.issued | 1 | |
dc.identifier.journaltitle | Journal of Integrable Systems | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/10468/15091 | |
dc.identifier.volume | 5 | |
dc.language.iso | en | en |
dc.publisher | Oxford University Press | |
dc.rights | © 2020, the Authors. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Minimal surface | |
dc.subject | Harmonic map | |
dc.subject | Spectral curve | |
dc.title | Properly embedded minimal annuli in S2 x R | en |
dc.type | Article (peer-reviewed) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- xyaa005.pdf
- Size:
- 440.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version