From atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations

dc.contributor.authorO'Donovan, Michael
dc.contributor.authorChaudhuri, Debapriya
dc.contributor.authorStreckenbach, Timo
dc.contributor.authorFarrell, Patricio
dc.contributor.authorSchulz, Stefan
dc.contributor.authorKoprucki, Thomas
dc.contributor.funderSustainable Energy Authority of Irelanden
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderDeutsche Forschungsgemeinschaften
dc.contributor.funderLeibniz-Gemeinschaften
dc.date.accessioned2021-08-11T08:53:21Z
dc.date.available2021-08-11T08:53:21Z
dc.date.issued2021-08-10
dc.date.updated2021-08-11T08:32:04Z
dc.description.abstractRandom alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices. Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport models. To do so, we combine atomistic tight-binding theory and continuum-based drift–diffusion solvers, where quantum corrections are included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and quantum corrections significantly affect the current–voltage characteristics of uni-polar electron transport in such devices. However, our investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multiquantum well systems.en
dc.description.sponsorshipScience Foundation Ireland (Nos. 17/CDA/4789; 12/RC/2276 P2); Deutsche Forschungsgemeinschaft (Germany’s Excellence Strategy EXC2046: MATH+, project AA2-15); Leibniz-Gemeinschaft (Leibniz competition 2020)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid065702en
dc.identifier.citationO'Donovan, M., Chaudhuri, D., Streckenbach, T., Farrell, P., Schulz, S. and Koprucki, T. (2021) 'From atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations', Journal of Applied Physics, 130(6), 065702 (13pp). doi: 10.1063/5.0059014en
dc.identifier.doi10.1063/5.0059014en
dc.identifier.eissn1089-7550
dc.identifier.endpage13en
dc.identifier.issn0021-8979
dc.identifier.issued6en
dc.identifier.journaltitleJournal of Applied Physicsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/11713
dc.identifier.volume130en
dc.language.isoenen
dc.publisherAmerican Institute of Physicsen
dc.rights© 2021, the Authors. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059014en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectRandom alloy fluctuationsen
dc.subjectOptoelectronic devicesen
dc.subject(In,Ga)Nen
dc.titleFrom atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuationsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5.0059014.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: