Wearable technology-based metrics for predicting operator performance during cardiac catheterisation
dc.contributor.author | Currie, Jonathan | |
dc.contributor.author | Bond, Raymond R. | |
dc.contributor.author | McCullagh, Paul | |
dc.contributor.author | Black, Pauline | |
dc.contributor.author | Finlay, Dewar D. | |
dc.contributor.author | Gallagher, Stephen | |
dc.contributor.author | Kearney, Peter | |
dc.contributor.author | Peace, Aaron | |
dc.contributor.author | Stoyanov, Danail | |
dc.contributor.author | Bicknell, Colin D. | |
dc.contributor.author | Leslie, Stephen | |
dc.contributor.author | Gallagher., Anthony G. | |
dc.contributor.funder | Department of the Economy, Northern Ireland | en |
dc.contributor.funder | Ulster University | en |
dc.date.accessioned | 2019-11-20T06:05:47Z | |
dc.date.available | 2019-11-20T06:05:47Z | |
dc.date.issued | 2019-04 | |
dc.description.abstract | Unobtrusive metrics that can auto-assess performance during clinical procedures are of value. Three approaches to deriving wearable technology-based metrics are explored: (1) eye tracking, (2) psychophysiological measurements [e.g. electrodermal activity (EDA)] and (3) arm and hand movement via accelerometry. We also measure attentional capacity by tasking the operator with an additional task to track an unrelated object during the procedure. | en |
dc.description.sponsorship | The ASSERT Centre, UCC. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Currie, J., Bond, R.R., McCullagh, P., Black, P., Finlay, D.D., Gallagher, S., Kearney, P., Peace, A., Stoyanov, D., Bicknell, C.D. and Leslie, S., 2019. Wearable technology-based metrics for predicting operator performance during cardiac catheterisation. International journal of computer assisted radiology and surgery, (13pp). DOI:10.1007/s11548-019-01918-0 | en |
dc.identifier.doi | 10.1007/s11548-019-01918-0 | en |
dc.identifier.endpage | 657 | en |
dc.identifier.issued | 4 | en |
dc.identifier.journaltitle | International Journal of Computer Assisted Radiology and Surgery | en |
dc.identifier.startpage | 645 | en |
dc.identifier.uri | https://hdl.handle.net/10468/9157 | |
dc.identifier.volume | 14 | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.uri | https://link.springer.com/article/10.1007%2Fs11548-019-01918-0 | |
dc.rights | © The Author(s) 2019 | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Surgical simulation | en |
dc.subject | Simulation-based training | en |
dc.subject | Eye tracking | en |
dc.subject | Wearable technology | en |
dc.subject | Attentional capacity | en |
dc.title | Wearable technology-based metrics for predicting operator performance during cardiac catheterisation | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Currie2019_Article_WearableTechnology-basedMetric.pdf
- Size:
- 1.52 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: