CBR driven interactive explainable AI
dc.check.date | 2024-07-30 | en |
dc.check.info | Access to this article is restricted until 12 months after publication by request of the publisher | en |
dc.contributor.author | Wijekoon, Anjana | en |
dc.contributor.author | Wiratunga, Nirmalie | en |
dc.contributor.author | Martin, Kyle | en |
dc.contributor.author | Corsar, David | en |
dc.contributor.author | Nkisi-Orji, Ikechukwu | en |
dc.contributor.author | Palihawadana, Chamath | en |
dc.contributor.author | Bridge, Derek G. | en |
dc.contributor.author | Pradeep, Preeja | en |
dc.contributor.author | Diaz Agudo, Belen | en |
dc.contributor.author | Caro-MartÃnez, Marta | en |
dc.contributor.editor | Massie, Stewart | en |
dc.contributor.editor | Chakraborti, Sutanu | en |
dc.contributor.funder | European Commission | en |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en |
dc.contributor.funder | Irish Research Council | en |
dc.date.accessioned | 2023-10-11T09:28:10Z | |
dc.date.available | 2023-10-11T09:28:10Z | |
dc.date.issued | 2023-07-30 | en |
dc.description.abstract | Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Numerous explanation techniques (explainers) exist in the literature, and recent findings suggest that addressing multiple user needs requires employing a combination of these explainers. We refer to such combinations as explanation strategies. This paper introduces iSee - Intelligent Sharing of Explanation Experience, an interactive platform that facilitates the reuse of explanation strategies and promotes best practices in XAI by employing the Case-based Reasoning (CBR) paradigm. iSee uses an ontology-guided approach to effectively capture explanation requirements, while a behaviour tree-driven conversational chatbot captures user experiences of interacting with the explanations and provides feedback. In a case study, we illustrate the iSee CBR system capabilities by formalising a real-world radiograph fracture detection system and demonstrating how each interactive tools facilitate the CBR processes. | en |
dc.description.sponsorship | European Commission (iSee project); Engineering and Physical Sciences Research Council (Grant number EP/V061755/1); Irish Research Council (Grant number CHIST-ERA-2019-iSee); MCIN/AEI and European Union (NextGenerationEU/PRTR Grant number PCI2020-120720-2) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Wijekoon, A., Wiratunga, N., Martin, K., Corsar, D., Nkisi-Orji, I., Palihawadana, C., Bridge, D., Pradeep, P., Diaz Agudo, B. and Caro-MartÃnez, M. (2023) 'CBR driven interactive explainable AI', in Massie, S. and Chakraborti, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2023, Lecture Notes in Computer Science, 14141, pp. 169-184. Springer, Cham. https://doi.org/10.1007/978-3-031-40177-0_11 | en |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-40177-0_11 | en |
dc.identifier.endpage | 184 | en |
dc.identifier.isbn | 9783031401763 | en |
dc.identifier.isbn | 9783031401770 | en |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.issn | 1611-3349 | en |
dc.identifier.journaltitle | Lecture Notes in Computer Science | en |
dc.identifier.startpage | 169 | en |
dc.identifier.uri | https://hdl.handle.net/10468/15099 | |
dc.identifier.volume | 14141 | en |
dc.language.iso | en | en |
dc.publisher | Springer Nature Switzerland AG | en |
dc.relation.ispartof | Case-Based Reasoning Research and Development | en |
dc.relation.ispartof | Lecture Notes in Computer Science | en |
dc.relation.ispartof | 31st International conference on case-based reasoning 2023 (ICCBR-2023): CBR in a data-driven world, 17-20 July 2023, Aberdeen, UK. Aberdeen: ICCBR [online], paper 70. | en |
dc.rights | © 2023, the Authors, under exclusive license to Springer Nature Switzerland AG. This is a post-peer-review, pre-copyedit version of a paper published as: Wijekoon, A. et al. (2023). CBR Driven Interactive Explainable AI. In: Massie, S., Chakraborti, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2023. Lecture Notes in Computer Science, vol 14141. Springer, Cham Springer, Cham. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-40177-0_11 | en |
dc.subject | Interactive XAI | en |
dc.subject | Ontology-based CBR | en |
dc.subject | Conversational AI | en |
dc.title | CBR driven interactive explainable AI | en |
dc.type | Conference item | en |