Metal-semimetal Schottky diode relying on quantum confinement

dc.contributor.authorGity, Farzan
dc.contributor.authorAnsari, Lida
dc.contributor.authorKönig, Christian
dc.contributor.authorVerni, Giuseppe Alessio
dc.contributor.authorHolmes, Justin D.
dc.contributor.authorLong, Brenda
dc.contributor.authorLanius, Martin
dc.contributor.authorSchüffelgen, Peter
dc.contributor.authorMussler, Gregor
dc.contributor.authorGrützmacher, Detlev
dc.contributor.authorGreer, James C.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderIrish Research Councilen
dc.date.accessioned2018-04-03T14:48:03Z
dc.date.available2018-04-03T14:48:03Z
dc.date.issued2018-03-21
dc.date.updated2018-04-03T14:39:47Z
dc.description.abstractQuantum confinement in a semimetal thin film such as bismuth (Bi) can lead to a semimetal-to-semiconductor transition which allows for the use of semimetals as semiconductors when patterned at nanoscale lengths. Bi native oxide on Bi thin film grown by molecular beam epitaxy (MBE) is investigated using X-ray photoelectron spectroscopy (XPS) to measure the elemental composition of the oxide. Also, an in-situ argon plasma etch step is developed allowing for the direct coating of the surface of thin Bi films by a metal contact to form a Schottky junction. Model structures of rhombohedral [111] and [110] bismuth thin films are found from density functional theory (DFT) calculations. The electronic structure of the model thin films is investigated using a GW correction and the formation of an energy band gap due to quantum confinement is found. Electrical characterization of the fabricated Bi-metal Schottky diode confirms a band gap opening in Bi thin film for a film thickness of approximately 5 nm consistent with the theoretical calculations.en
dc.description.sponsorshipIrish Research Council (Award No. GOIPD/2016/643)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGity, F., Ansari, L., König, C., Verni, G. A., Holmes, J., Long, B., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D. and Greer, J. C. (2018) 'Metal-semimetal Schottky diode relying on quantum confinement', Microelectronic Engineering, In Press, doi: 10.1016/j.mee.2018.03.022en
dc.identifier.doi10.1016/j.mee.2018.03.022
dc.identifier.endpage7en
dc.identifier.issn0167-9317
dc.identifier.journaltitleMicroelectronic Engineeringen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/5725
dc.language.isoenen
dc.publisherElsevieren
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/13/IA/1956/IE/SMALL: Semi-Metal ALL-in-One Technologies/en
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0167931718301369
dc.rights© 2018 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectBismuthen
dc.subjectNative oxideen
dc.subjectQuantum confinementen
dc.subjectSchottky junctionen
dc.subjectSemimetalen
dc.subjectXPSen
dc.titleMetal-semimetal Schottky diode relying on quantum confinementen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5135.pdf
Size:
842.73 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: