A sub k(B)T/q semimetal nanowire field effect transistor

dc.contributor.authorAnsari, Lida
dc.contributor.authorFagas, Giorgos
dc.contributor.authorGity, Farzan
dc.contributor.authorGreer, James C.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderHigher Education Authorityen
dc.date.accessioned2020-10-09T15:51:34Z
dc.date.available2020-10-09T15:51:34Z
dc.date.issued2016-08-09
dc.date.updated2020-10-09T15:42:49Z
dc.description.abstractThe key challenge for nanoelectronics technologies is to identify the designs that work on molecular length scales, provide reduced power consumption relative to classical field effect transistors (FETs), and that can be readily integrated at low cost. To this end, a FET is introduced that relies on the quantum effects arising for semimetals patterned with critical dimensions below 5 nm, that intrinsically has lower power requirements due to its better than a "Boltzmann tyranny" limited subthreshold swing (SS) relative to classical field effect devices, eliminates the need to form heterojunctions, and mitigates against the requirement for abrupt doping profiles in the formation of nanowire tunnel FETs. This is achieved through using a nanowire comprised of a single semimetal material while providing the equivalent of a heterojunction structure based on shape engineering to avail of the quantum confinement induced semimetal-to-semiconductor transition. Ab initio calculations combined with a non-equilibrium Green's function formalism for charge transport reveals tunneling behavior in the OFF state and a resonant conduction mechanism for the ON state. A common limitation to tunnel FET (TFET) designs is related to a low current in the ON state. A discussion relating to the semimetal FET design to overcome this limitation while providing less than 60 meV/dec SS at room temperature is provided.en
dc.description.sponsorshipScience Foundation Ireland and Higher Education Authority (SFI/HEA Irish Centre for High-End Computing (ICHEC))en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid063108en
dc.identifier.citationAnsari, L., Fagas, G., Gity, F. and Greer, J. C. (2016) 'A sub kBT/q semimetal nanowire field effect transistor', Applied Physics Letters, 109(6), 063108 (5 pp). doi: 10.1063/1.4960709en
dc.identifier.doi10.1063/1.4960709en
dc.identifier.endpage5en
dc.identifier.issn0003-6951
dc.identifier.journaltitleApplied Physics Lettersen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/10649
dc.identifier.volume109en
dc.language.isoenen
dc.publisherAIP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/13/IA/1956/IE/SMALL: Semi-Metal ALL-in-One Technologies/en
dc.relation.urihttps://aip.scitation.org/doi/10.1063/1.4960709
dc.rights© 2016, AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Appl. Phys. Lett. 109, 063108 (2016) and may be found at https://aip.scitation.org/doi/10.1063/1.4960709en
dc.subjectAb initio calculationsen
dc.subjectElectrical conductivityen
dc.subjectField effect transistorsen
dc.subjectNanoelectronicsen
dc.subjectNanowiresen
dc.subjectSemiconductor heterojunctionsen
dc.subjectSemimetalsen
dc.subjectTunnel transistorsen
dc.subjectTunnellingen
dc.titleA sub k(B)T/q semimetal nanowire field effect transistoren
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.4960709.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: