Learning a stopping criterion for local search
dc.contributor.author | Arbelaez, Alejandro | en |
dc.contributor.author | O’Sullivan, Barry | en |
dc.contributor.editor | Festa, Paola | en |
dc.contributor.editor | Sellmann, Meinolf | en |
dc.contributor.editor | Vanschoren, Joaquin | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Seventh Framework Programme | en |
dc.date.accessioned | 2024-02-06T14:43:26Z | |
dc.date.available | 2024-02-06T14:43:26Z | |
dc.date.issued | 2016-12-01 | en |
dc.description.abstract | Local search is a very effective technique to tackle combinatorial problems in multiple areas ranging from telecommunications to transportations, and VLSI circuit design. A local search algorithm typically explores the space of solutions until a given stopping criterion is met. Ideally, the algorithm is executed until a target solution is reached (e.g., optimal or near-optimal). However, in many real-world problems such a target is unknown. In this work, our objective is to study the application of machine learning techniques to carefully craft a stopping criterion. More precisely, we exploit instance features to predict the expected quality of the solution for a given algorithm to solve a given problem instance, we then run the local search algorithm until the expected quality is reached. Our experiments indicate that the suggested method is able to reduce the average runtime up to 80% for real-world instances and up to 97% for randomly generated instances with a minor impact in the quality of the solutions. | en |
dc.description.sponsorship | Science Foundation Ireland (Grant No. 10/CE/I1853) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Arbelaez, A. and O’Sullivan, B. (2016) 'Learning a stopping criterion for local search', in Festa, P., Sellmann, M. and Vanschoren, J. (eds.) Learning and Intelligent Optimization. LION 2016, pp. 3-16. Lecture Notes in Computer Science, 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_1 | en |
dc.identifier.doi | 10.1007/978-3-319-50349-3_1 | en |
dc.identifier.endpage | 16 | en |
dc.identifier.isbn | 9783319503486 | en |
dc.identifier.isbn | 9783319503493 | en |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.issn | 1611-3349 | en |
dc.identifier.journaltitle | Lecture Notes in Computer Science | en |
dc.identifier.startpage | 3 | en |
dc.identifier.uri | https://hdl.handle.net/10468/15498 | |
dc.identifier.volume | 10079 | en |
dc.language.iso | en | en |
dc.publisher | Springer Nature Ltd. | en |
dc.relation.ispartof | Lecture Notes in Computer Science | en |
dc.relation.ispartof | International Conference on Learning and Intelligent Optimization (LION 2016) | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/318137/EU/The DIStributed Core for unlimited bandwidth supply for all Users and Services/DISCUS | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.rights | © 2016, Springer International Publishing Switzerland. This version of the paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-319-50349-3_1 | en |
dc.subject | Local search | en |
dc.subject | Problem instance | en |
dc.subject | Travel salesman problem | en |
dc.subject | Local search algorithm | en |
dc.subject | Average runtime | en |
dc.title | Learning a stopping criterion for local search | en |
dc.type | Book chapter | en |
dc.type | Conference item | en |