Tuning transition metal carbide activity by surface metal alloying: a case study on CO2 capture and activation
dc.contributor.author | López, Martí | |
dc.contributor.author | Broderick, Luke | |
dc.contributor.author | Carey, John J. | |
dc.contributor.author | Viñes, Francesc | |
dc.contributor.author | Nolan, Michael | |
dc.contributor.author | Illas, Francesc | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Seventh Framework Programme | en |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad, Gobierno de España | en |
dc.contributor.funder | Generalitat de Catalunya | en |
dc.contributor.funder | Horizon 2020 | en |
dc.contributor.funder | Institució Catalana de Recerca i Estudis Avançats | en |
dc.date.accessioned | 2020-02-18T15:15:56Z | |
dc.date.available | 2020-02-18T15:15:56Z | |
dc.date.issued | 2018-08-08 | |
dc.date.updated | 2020-02-18T15:06:25Z | |
dc.description.abstract | CO2 is one of the main actors in the greenhouse effect and its removal from the atmosphere is becoming an urgent need. Thus, CO2 capture and storage (CCS) and CO2 capture and usage (CCU) are intensively investigated technologies to decrease the concentration of atmospheric CO2. Both CCS and CCU require appropriate materials to adsorb/release and adsorb/activate CO2, respectively. Recently, it has been theoretically and experimentally shown that transition metal carbides (TMC) are able to capture, store, and activate CO2. To further improve the adsorption capacity of these materials, a deep understanding of the atomic level processes involved is essential. In the present work, we theoretically investigate the possible effects of surface metal doping of these TMCs by taking TiC as a textbook case and Cr, Hf, Mo, Nb, Ta, V, W, and Zr as dopants. Using periodic slab models with large supercells and state-of-the-art density functional theory based calculations we show that CO2 adsorption is enhanced by doping with metals down a group but worsened along the d series. Adsorption sites, dispersion and coverage appear to play a minor, secondary constant effect. The dopant-induced adsorption enhancement is highly biased by the charge rearrangement at the surface. In all cases, CO2 activation is found but doping can shift the desorption temperature by up to 135 K. | en |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad, Gobierno de España (Spanish Ministerio de Economı´a y Competitividad (MINECO/FEDER) CTQ2015-64618-R grant, Generalitat de Catalunya grants 2017SGR13 and XRQTC, and EU H2020 NOMAD project No 6765800; a Ramo´n y Cajal research contract (RYC-2012-10129)); Institució Catalana de Recerca i Estudis Avançats (2015 ICREA Academia Award for Excellence in Research. Catalan Institute for Research and Advanced Studies (ICREA)) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | López, M., Broderick, L., Carey, J. J., Viñes, F., Nolan, M. and Illas, F. (2018) 'Tuning transition metal carbide activity by surface metal alloying: a case study on CO2 capture and activation', Physical Chemistry Chemical Physics, 20(34), pp. 22179-22186. doi: 10.1039/c8cp03648a | en |
dc.identifier.doi | 10.1039/c8cp03648a | en |
dc.identifier.endpage | 22186 | en |
dc.identifier.issn | 1463-9076 | |
dc.identifier.journaltitle | Physical Chemistry Chemical Physics | en |
dc.identifier.startpage | 22179 | en |
dc.identifier.uri | https://hdl.handle.net/10468/9662 | |
dc.identifier.volume | 20 | en |
dc.language.iso | en | en |
dc.publisher | Royal Society of Chemistry | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP1::NMP/604296/EU/Catalytic Partial Oxidation of Bio Gas and Reforming of Pyrolysis Oil (Bio Oil) for an Autothermal Synthesis Gas Production and Conversion into Fuels/BIOGO-FOR-PRODUCTION | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/H2020::RIA/676580/EU/The Novel Materials Discovery Laboratory/NoMaD | en |
dc.relation.uri | https://pubs.rsc.org/en/content/articlehtml/2018/cp/c8cp03648a | |
dc.rights | © the Owner Societies 2018, Royal Society of Chemistry | en |
dc.subject | Titanium carbide | en |
dc.subject | Carbides | en |
dc.subject | Theory calculations | en |
dc.subject | CO2 | en |
dc.subject | Carbon capture | en |
dc.subject | Carbon storage | en |
dc.title | Tuning transition metal carbide activity by surface metal alloying: a case study on CO2 capture and activation | en |
dc.type | Article (peer-reviewed) | en |