iSee: intelligent sharing of explanation experiences
dc.contributor.author | Martin, Kyle | en |
dc.contributor.author | Wijekoon, Anjana | en |
dc.contributor.author | Wiratunga, Nirmalie | en |
dc.contributor.author | Palihawadana, Chamath | en |
dc.contributor.author | Nkisi-Orji, Ikechukwu | en |
dc.contributor.author | Corsar, David | en |
dc.contributor.author | Díaz-Agudo, Belén | en |
dc.contributor.author | Recio-García, Juan A. | en |
dc.contributor.author | Caro-Martínez, Marta | en |
dc.contributor.author | Bridge, Derek G. | en |
dc.contributor.author | Pradeep, Preeja | en |
dc.contributor.author | Liret, Anne | en |
dc.contributor.author | Fleisch, Bruno | en |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en |
dc.date.accessioned | 2025-03-19T13:35:08Z | |
dc.date.available | 2025-03-19T13:35:08Z | |
dc.date.issued | 2022 | en |
dc.description.abstract | The right to an explanation of the decision reached by a machine learning (ML) model is now an EU regulation. However, different system stakeholders may have different background knowledge, competencies and goals, thus requiring different kinds of explanations. There is a growing armoury of XAI methods, interpreting ML models and explaining their predictions, recommendations and diagnoses. We refer to these collectively as ”explanation strategies”. As these explanation strategies mature, practitioners gain experience in understanding which strategies to deploy in different circumstances. What is lacking, and what the iSee project will address, is the science and technology for capturing, sharing and re-using explanation strategies based on similar user experiences, along with a much-needed route to explainable AI (XAI) compliance. Our vision is to improve every user’s experience of AI, by harnessing experiences of best practice in XAI by providing an interactive environment where personalised explanation experiences are accessible to everyone. Video Link: https://youtu.be/81O6-q_yx0s | en |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (Grant number EP/V061755/1) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Martin, K., Wijekoon, A., Wiratunga, N., Palihawadana, C., Nkisi-Orji, I., Corsar, D., Díaz-Agudo, B., Recio-García, J. A., Caro-Martínez, M., Bridge, D. and Pradeep, P. (2022) 'iSee: intelligent sharing of explanation experiences', in Reuss, P. and Schönborn, J. (eds.) Workshop proceedings of the 30th International conference on case-based reasoning (ICCBR-WS 2022), 12-15 September 2022, Nancy, France. CEUR Workshop Proceedings, 3389. Aachen: CEUR-WS [online], pp. 231-232. Available at: https://ceur-ws.org/Vol-3389/ICCBR_2022_Workshop_paper_83.pdf | en |
dc.identifier.endpage | 232 | en |
dc.identifier.issn | 1613-0073 | en |
dc.identifier.journaltitle | CEUR Workshop Proceedings | en |
dc.identifier.startpage | 231 | en |
dc.identifier.uri | https://hdl.handle.net/10468/17188 | |
dc.identifier.volume | 3389 | en |
dc.language.iso | en | en |
dc.publisher | CEUR-WS | en |
dc.relation.ispartof | 30th International conference on case-based reasoning (ICCBR-WS 2022), 12-15 September 2022, Nancy, France | en |
dc.relation.uri | https://ceur-ws.org/Vol-3389/ICCBR_2022_Workshop_paper_83.pdf | en |
dc.rights | © 2022, the Authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Explainability | en |
dc.subject | Case-based reasoning | en |
dc.subject | Project showcase | en |
dc.title | iSee: intelligent sharing of explanation experiences | en |
dc.type | Conference item | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- MARTIN 2022 iSee intelligent sharing (VOR v2).pdf
- Size:
- 952.99 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: