Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors
dc.contributor.author | Buitrago, Elizabeth | |
dc.contributor.author | Badia, Monserrat Fernández-Bolaños | |
dc.contributor.author | Georgiev, Yordan M. | |
dc.contributor.author | Yu, Ran | |
dc.contributor.author | Lotty, Olan | |
dc.contributor.author | Holmes, Justin D. | |
dc.contributor.author | Nightingale, Adrian M. | |
dc.contributor.author | Guerin, Höel M. | |
dc.contributor.author | Ionescu, Adrian M. | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Commission | en |
dc.date.accessioned | 2016-02-10T17:39:04Z | |
dc.date.available | 2016-02-10T17:39:04Z | |
dc.date.issued | 2014-04-03 | |
dc.date.updated | 2014-10-21T11:13:45Z | |
dc.description.abstract | A 3D vertically stacked silicon nanowire (SiNW) field effect transistor featuring a high density array of fully depleted channels gated by a backgate and one or two symmetrical platinum side-gates through a liquid has been electrically characterized for their implementation into a robust biosensing system. The structures have also been characterized electrically under vacuum when completely surrounded by a thick oxide layer. When fully suspended, the SiNWs may be surrounded by a conformal high-κ gate dielectric (HfO2) or silicon dioxide. The high density array of nanowires (up to 7 or 8 × 20 SiNWs in the vertical and horizontal direction, respectively) provides for high drive currents (1.3 mA/μm, normalized to an average NW diameter of 30 nm at VSG = 3 V, and Vd = 50 mV, for a standard structure with 7 × 10 NWs stacked) and high chances of biomolecule interaction and detection. The use of silicon on insulator substrates with a low doped device layer significantly reduces leakage currents for excellent Ion/Ioff ratios >106 of particular importance for low power applications. When the nanowires are submerged in a liquid, they feature a gate all around architecture with improved electrostatics that provides steep subthreshold slopes (SS < 75 mV/dec), low drain induced barrier lowering (DIBL < 20 mV/V) and high transconductances (gm > 10 μS) while allowing for the entire surface area of the nanowire to be available for biomolecule sensing. The fabricated devices have small SiNW diameters (down to dNW ∼ 15–30 nm) in order to be fully depleted and provide also high surface to volume ratios for high sensitivities. | en |
dc.description.sponsorship | Science Foundation Ireland (SFI grant no. 09/IN.1/I2602.); European Commission (FP7 Semiconducting Nanowire Platform for Autonomous Sensors (SiNAPS) European Collaborative Project (Grant 257856), Integrated Project eBRAINSICT-25748) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Submitted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | BUITRAGO, E., BADIA, M. F.-B., GEORGIEV, Y. M., YU, R., LOTTY, O., HOLMES, J. D., NIGHTINGALE, A. M., GUERIN, H. M. & IONESCU, A. M. 2014. Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors. Sensors and Actuators B: Chemical, 199, 291-300. http://www.sciencedirect.com/science/article/pii/S092540051400375X | en |
dc.identifier.doi | 10.1016/j.snb.2014.03.099 | |
dc.identifier.endpage | 300 | en |
dc.identifier.issn | 0925-4005 | |
dc.identifier.journaltitle | Sensors and Actuators, B: Chemical | en |
dc.identifier.startpage | 291 | en |
dc.identifier.uri | https://hdl.handle.net/10468/2277 | |
dc.identifier.volume | 199 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.uri | http://www.sciencedirect.com/science/article/pii/S092540051400375X | |
dc.rights | © 2014 Elsevier B.V. © 2014, This submitted version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ To access the published work, see http://dx.doi.org/10.1016/j.snb.2014.03.099 | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | ISFET | en |
dc.subject | Sensor | en |
dc.subject | FinFET | en |
dc.subject | SiNW | en |
dc.subject | GAA | en |
dc.subject | Ion sensitive field effect transistor | en |
dc.subject | Biomolecules | en |
dc.subject | Gate dielectrics | en |
dc.subject | Hafnium oxides | en |
dc.subject | Leakage currents | en |
dc.subject | Nanowires | en |
dc.subject | Sensors | en |
dc.subject | Silicon on insulator technology | en |
dc.subject | Biomolecule interactions | en |
dc.subject | Drain-induced barrier lowering | en |
dc.subject | Electrical characterization | en |
dc.subject | High surface-to-volume ratio | en |
dc.subject | Silicon-on-insulator substrates | en |
dc.subject | Liquids | en |
dc.title | Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors | en |
dc.title.alternative | Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET for biosensing applications | en |
dc.type | Article (peer-reviewed) | en |