Multifunctional photo/thermal catalysts for the reduction of carbon dioxide

dc.check.date2018-06-17
dc.check.infoAccess to this article is restricted for 24 months after publication by request of the publisher.en
dc.contributor.authorSchwartzenberg, K. C.
dc.contributor.authorHamilton, J. W. J.
dc.contributor.authorLucid, Aoife K.
dc.contributor.authorWeitz, E.
dc.contributor.authorNotestein, J.
dc.contributor.authorNolan, Michael
dc.contributor.authorByrne, J. Anthony
dc.contributor.authorGray, K. A.
dc.contributor.funderNational Science Foundationen
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Commissionen
dc.contributor.funderDepartment of Education and Learning, Northern Irelanden
dc.contributor.funderEuropean Cooperation in Science and Technologyen
dc.date.accessioned2017-11-02T12:07:03Z
dc.date.available2017-11-02T12:07:03Z
dc.date.issued2016-06-17
dc.date.updated2017-11-02T10:33:06Z
dc.description.abstractThe photochemical fixation of CO2 to energy rich products for solar energy storage or feedstock chemicals is an attractive, albeit daunting, challenge. The overall feasibility of CO2 conversion is limited by the availability of efficient photo-active materials that meet the energetic requirements for CO2 reduction and are optically matched to the solar spectrum. Surface modification of TiO2 with earth abundant metal oxides presents one approach to develop visible active photocatalysts through band gap narrowing, while providing catalytic sites to lower the activation energy for CO2 reduction. In this work density functional theory was used to model the effect of surface modification of rutile and anatase using MnOx nanoclusters. The results indicate the formation of inter-band gap states following surface modification with MnOx, but surface water can change this. Oxygen vacancies are predicted to form in supported MnOx and the interaction with CO2 was investigated. MnOx-TiO2 was synthesized and characterised using surface analytical methods and photoelectrochemistry. The interaction of CO2 with the materials under irradiation was probed using in-situ FTIR to interrogate the role of oxygen vacancies in CO2 binding and reaction. These results provide insights into the requirements of a multifunctional catalyst for CO2 conversion.en
dc.description.sponsorshipNational Science Foundation and Science Foundation Ireland (US-Ireland R&D Partnership Program, NSF (CBET-1438721), SFI (SFI 14/US/E2915) and DELNI (USI065)); European Commission (European Cooperation in Science and Technology COST ActionCM1104 “Reducible Metal Oxides, Structure and Function”); Science Foundation Ireland and Higher Education Authority (SFI funded computing resources at Tyndall and the SFI/HEA funded Irish Centre for High End Computing); European Commission (Partnership in Advanced Computing (contracts RI-261557, RI-283493 and RI-312763))en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSchwartzenberg, K. C., Hamilton, J. W. J., Lucid, A. K., Weitz, E., Notestein, J., Nolan, M., Byrne, J. A. and Gray, K. A. (2017) 'Multifunctional photo/thermal catalysts for the reduction of carbon dioxide', Catalysis Today, 280(Part 1), pp. 65-73. doi: 10.1016/j.cattod.2016.06.002en
dc.identifier.doi10.1016/j.cattod.2016.06.002
dc.identifier.endpage73en
dc.identifier.issn0920-5861
dc.identifier.issuedPart 1en
dc.identifier.journaltitleCatalysis Todayen
dc.identifier.startpage65en
dc.identifier.urihttps://hdl.handle.net/10468/4947
dc.identifier.volume280en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/en
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0920586116303923
dc.rights© 2016 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectPhotocatalysisen
dc.subjectCarbon dioxideen
dc.subjectPhotoelectrochemistryen
dc.subjectDensity functional theoryen
dc.subjectOxygen vacanciesen
dc.titleMultifunctional photo/thermal catalysts for the reduction of carbon dioxideen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Catal_Today_j.cattod.2016.06.002.pdf
Size:
126.29 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: