Reducing the cost of machine learning differential attacks using bit selection and a partial ML-distinguisher
dc.contributor.author | Ebrahimi, Amirhossein | |
dc.contributor.author | Regazzoni, Francesco | |
dc.contributor.author | Palmieri, Paolo | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2023-05-17T15:04:44Z | |
dc.date.available | 2023-05-09T15:09:11Z | en |
dc.date.available | 2023-05-17T15:04:44Z | |
dc.date.issued | 2023-04-01 | |
dc.date.updated | 2023-05-09T14:09:14Z | en |
dc.description.abstract | In a differential cryptanalysis attack, the attacker tries to observe a block cipher’s behavior under an input difference: if the system’s resulting output differences show any non-random behavior, a differential distinguisher is obtained. While differential cryptanlysis has been known for several decades, Gohr was the first to propose in 2019 the use of machine learning (ML) to build a distinguisher. In this paper, we present the first Partial Differential (PD) ML distinguisher, and demonstrate its effectiveness on cipher SPECK32/64. As a PD-ML-distinguisher is based on a selection of bits rather than all bits in a block, we also study if different selections of bits have different impact in the accuracy of the distinguisher, and we find that to be the case. More importantly, we also establish that certain bits have reliably higher effectiveness than others, through a series of independent experiments on different datasets, and we propose an algorithm for assigning an effectiveness score to each bit in the block. By selecting the highest scoring bits, we are able to train a partial ML-distinguisher over 8-bits that is almost as accurate as an equivalent ML-distinguisher over the entire 32 bits (68.8% against 72%), for six rounds of SPECK32/64. Furthermore, we demonstrate that our obtained machine can reduce the time complexity of the key-averaging algorithm for training a 7-round distinguisher by a factor of 25 at a cost of only 3% in the resulting machine’s accuracy. These results may therefore open the way to the application of (partial) ML-based distinguishers to ciphers whose block size has so far been considered too large. | |
dc.description.status | Peer reviewed | |
dc.description.version | Accepted Version | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Ebrahimi, A., Regazzoni, F. and Palmieri, P. (2023) ‘Reducing the cost of machine learning differential attacks using bit selection and a partial ml-distinguisher’, in G.-V. Jourdan, L. Mounier, C. Adams, F. Sèdes, and J. Garcia-Alfaro (eds) Foundations and Practice of Security, FPS 2022, Lecture Notes in Computer Science, vol 13877, Cham: Springer Nature Switzerland, pp. 123-141. https://doi.org/10.1007/978-3-031-30122-3_8. | en |
dc.identifier.doi | 10.1007/978-3-031-30122-3_8 | |
dc.identifier.endpage | 141 | |
dc.identifier.isbn | 978-3-031-30121-6 | |
dc.identifier.isbn | 978-3-031-30122-3 | |
dc.identifier.journaltitle | Lecture Notes in Computer Science | |
dc.identifier.startpage | 123 | |
dc.identifier.uri | https://hdl.handle.net/10468/14480 | |
dc.identifier.volume | 13877 | |
dc.language.iso | en | en |
dc.publisher | Springer | |
dc.relation.ispartof | Foundations and Practice of Security. FPS 2022 | |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Centres for Research Training Programme::Data and ICT Skills for the Future/18/CRT/6222/IE/SFI Centre for Research Training in Advanced Networks for Sustainable Societies/ | |
dc.rights | © 2023. This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-031-30122-3_8. | |
dc.subject | Differential cryptanalysis | en |
dc.subject | Machine Learning based cryptanalysis | en |
dc.subject | Partial ML-distinguisher | en |
dc.title | Reducing the cost of machine learning differential attacks using bit selection and a partial ML-distinguisher | en |
dc.type | Article (peer-reviewed) | en |
dc.type | Conference_Item | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- partial_machine_learning_distinguisher.pdf
- Size:
- 635.24 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version