A new XYZ compliant parallel mechanism for micro-/nano-manipulation: Design and analysis

dc.contributor.authorLi, Haiyang
dc.contributor.authorHao, Guangbo
dc.contributor.authorKavanagh, Richard C.
dc.contributor.funderIrish Research Councilen
dc.date.accessioned2019-11-26T11:01:46Z
dc.date.available2019-11-26T11:01:46Z
dc.date.issued2016-02-01
dc.description.abstractBased on the constraint and position identification (CPI) approach for synthesizing XYZ compliant parallel mechanisms (CPMs) and configuration modifications, this paper proposes a new fully-symmetrical XYZ CPM with desired motion characteristics such as reduced cross-axis coupling, minimized lost motion, and relatively small parasitic motion. The good motion characteristics arise from not only its symmetric configuration, but also the rigid linkages between non-adjacent rigid stages. Comprehensive kinematic analysis is carried out based on a series of finite element simulations over a motion range per axis less than ±5% of the beam length, which reveals that the maximum cross-axis coupling rate is less than 0.86%, the maximum lost motion rate is less than 1.20%, the parasitic rotations of the motion stage (MS) are in the order of 10−5 rad, and the parasitic translations of the three actuated stages (ASs) are in the order of 10−4 of the beam length (less than 0.3% of the motion range), where the beam slenderness ratio is larger than 20. Furthermore, the nonlinear analytical models of the primary translations of the XYZ CPM, including the primary translations of the MS and the ASs, are derived and validated to provide a quick design synthesis. Moreover, two practical design schemes of the proposed XYZ CPM are discussed with consideration of the manufacturability. The practical designs enable the XYZ CPM to be employed in many applications such as micro-/nano-positioning, micro-/nano-manufacturing and micro-/nano-assembly. Finally, a spatial high-precision translational system is presented based on the practical design schemes, taking the actuator and sensor integration into account.en
dc.description.sponsorshipIrish Research Council (IRCSET Embark PhD scholarship RS/2012/361)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid23en
dc.identifier.citationLi, H., Hao, G. and Kavanagh, R. C. (2016) 'A New XYZ Compliant Parallel Mechanism for Micro-/Nano-Manipulation: Design and Analysis', Micromachines, 7(2), 23 (18pp) doi: 10.3390/mi7020023en
dc.identifier.doi10.3390/mi7020023en
dc.identifier.eissn2072-666X
dc.identifier.endpage18en
dc.identifier.issued2en
dc.identifier.journaltitleMicromachinesen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/9245
dc.identifier.volume7en
dc.language.isoenen
dc.publisherMDPIen
dc.rights©2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectCompliant parallel mechanismen
dc.subjectMicro-/nano-manipulationen
dc.subjectConceptual designen
dc.subjectKinematic analysisen
dc.subjectAnalytical modelingen
dc.subjectPractical designen
dc.titleA new XYZ compliant parallel mechanism for micro-/nano-manipulation: Design and analysisen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
micromachines-07-00023-v2.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: