Model of thermo-optic nonlinear dynamics of photonic crystal cavities

dc.contributor.authorIadanza, Simone
dc.contributor.authorClementi, C.
dc.contributor.authorHu, C.
dc.contributor.authorSchulz, Sebastian A.
dc.contributor.authorGerace, D.
dc.contributor.authorGalli, M.
dc.contributor.authorO'Faolain, Liam
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Research Councilen
dc.contributor.funderSeventh Framework Programmeen
dc.contributor.funderHorizon 2020en
dc.contributor.funderMinistero dell’Istruzione, dell’Università e della Ricercaen
dc.date.accessioned2020-12-10T10:04:48Z
dc.date.available2020-12-10T10:04:48Z
dc.date.issued2020-12-03
dc.description.abstractThe wavelength scale confinement of light offered by photonic crystal (PhC) cavities is one of the fundamental features on which many important on-chip photonic components are based, opening silicon photonics to a wide range of applications from telecommunications to sensing. This trapping of light in a small space also greatly enhances optical nonlinearities and many potential applications build on these enhanced light-matter interactions. In order to use PhCs effectively for this purpose it is necessary to fully understand the nonlinear dynamics underlying PhC resonators. In this work, we derive a first principles thermal model outlining the nonlinear dynamics of optically pumped silicon two-dimensional (2D) PhC cavities by calculating the temperature distribution in the system in both time and space. We demonstrate that our model matches experimental results well and use it to describe the behavior of different types of PhC cavity designs. Thus, we demonstrate the model's capability to predict thermal nonlinearities of arbitrary 2D PhC microcavities in any material, only by substituting the appropriate physical constants. This renders the model critical for the development of nonlinear optical devices prior to fabrication and characterization.en
dc.description.sponsorshipScience Foundation Ireland (17/QERA/3472, 12/RC/2276_P2); Ministero dell’Istruzione, dell’Università e della Ricerca (Dipartimenti di Eccellenza Program 2018-2022)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid245404en
dc.identifier.citationIadanza, S., Clementi, M., Hu, C., Schulz, S. A., Gerace, D., Galli, M. and O'Faolain, L. (2020) ‘Model of thermo-optic nonlinear dynamics of photonic crystal cavities’, Physical Review B, 102(24), 245404 (15pp). doi: 10.1103/PhysRevB.102.245404en
dc.identifier.doi10.1103/PhysRevB.102.245404en
dc.identifier.eissn2469-9969
dc.identifier.endpage15en
dc.identifier.issn2469-9950
dc.identifier.issued24en
dc.identifier.journaltitlePhysical Review Ben
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/10827
dc.identifier.volume102en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP2::ERC/337508/EU/DAtacommunications based on NanophotoniC Resonators/DANCERen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/780240/EU/mid infraREd Fully Integrated CHemical sensors/REDFINCHen
dc.relation.projectinfo:eu-repo/grantAgreement/FWF/Internationale Projekte/I 3760/AT/CMOS Compatible Single Photon Sources (CUSPIDOR)/en
dc.rights© 2020, American Physical Society. All rights reserved.en
dc.subjectNonlinear dynamicsen
dc.subjectOptically pumped silicon two-dimensional (2D) PhC cavitiesen
dc.subjectTemperature distributionen
dc.subjectThermal nonlinearitiesen
dc.subject2D PhC microcavitiesen
dc.titleModel of thermo-optic nonlinear dynamics of photonic crystal cavitiesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.102.245404.pdf
Size:
2.87 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: