NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life
dc.contributor.author | Padmanathan, Narayanasamy | |
dc.contributor.author | Selladurai, Subramanian | |
dc.contributor.author | Rahulan, K. Mani | |
dc.contributor.author | O'Dwyer, Colm | |
dc.contributor.author | Razeeb, Kafil M. | |
dc.contributor.funder | Seventh Framework Programme | en |
dc.date.accessioned | 2018-05-10T11:09:17Z | |
dc.date.available | 2018-05-10T11:09:17Z | |
dc.date.issued | 2015-04-26 | |
dc.date.updated | 2018-05-03T08:07:21Z | |
dc.description.abstract | A 3D hierarchical NiO nanostructures with combined microstructure of nanoflakes and nanoflowers have been fabricated on carbon fibre cloth (CFC). Unique nano-micro structural features of NiO/CFC electrode showed an enhanced electrochemical activity in organic electrolyte (1 M tetraethylammonium tetrafluorborate (TEABF4) in propylene carbonate) in terms of rate capability, specific energy and power performance as well as potential limit. The electrode showed a specific capacitance of 170 Fg−1 for a current density of 5 Ag−1. Configured as a two-electrode symmetric supercapacitor, the device showed a specific capacitance of 34.9 Fg−1 at 1 Ag−1 current density. It delivered a maximum specific energy density of 19.4 Wh kg−1 at a high power density of 1002.8 W kg−1 at a constant current density of 1 Ag−1. The cell is also capable of long-term cycling stability with an efficiency of 58 % after 25,000 cycles with a potential window of 0 to ±2 V. This superior electrochemical activity of the NiO electrode is due to their structural benefits of well-connected hybrid nano/mesoporous structure and rapid ion intercalation within the porous electrode surface. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Padmanathan, N., Selladurai, S., Rahulan, K. M., O’Dwyer, C. and Razeeb, K. M. (2015) 'NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life', Ionics, 21(9), pp. 2623-2631. doi: 10.1007/s11581-015-1444-9 | en |
dc.identifier.doi | 10.1007/s11581-015-1444-9 | |
dc.identifier.endpage | 2631 | en |
dc.identifier.issn | 1862-0760 | |
dc.identifier.journaltitle | Ionics | en |
dc.identifier.startpage | 2623 | en |
dc.identifier.uri | https://hdl.handle.net/10468/6073 | |
dc.identifier.volume | 21 | en |
dc.language.iso | en | en |
dc.publisher | Springer Verlag | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP1::NMP/604360/EU/MANpower - Energy Harvesting and Storage for Low Frequency Vibrations/MANPOWER | en |
dc.relation.uri | http://link.springer.com/article/10.1007/s11581-015-1444-9 | |
dc.rights | © Springer-Verlag Berlin Heidelberg 2015. This is a post-peer-review, pre-copyedit version of an article published in Ionics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11581-015-1444-9 | en |
dc.subject | Nickel oxide | en |
dc.subject | Nanomaterials | en |
dc.subject | Flexible electrode | en |
dc.subject | Pseudocapacitor | en |
dc.subject | Supercapacitor | en |
dc.title | NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life | en |
dc.type | Article (peer-reviewed) | en |