Proximal oxidation as a director of self organisation

dc.contributor.authorFois, Giovanni
dc.contributor.authorBolger, Ciara T.
dc.contributor.authorHolmes, Justin D.
dc.contributor.authorCross, Graham L. W.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderIrish Research Council for Science, Engineering and Technologyen
dc.contributor.funderHigher Education Authorityen
dc.date.accessioned2018-08-31T11:37:39Z
dc.date.available2018-08-31T11:37:39Z
dc.date.issued2011-06
dc.date.updated2018-08-06T15:03:53Z
dc.description.abstractSelf-organising templates used as etch masks and growth seeds enable efficient mass fabrication of nanoscale device layers. In this work we introduce a new way to direct self-organisation of nanoscale pore formation during anodisation of metal layers of direct relevance to nanofabrication process flows. We demonstrate and quantitatively characterise how proximal surface oxidation frustrates and redirects random pore ordering in the film. Our results show a strict correlation between pore formation and oxide thickness on the aluminium surface providing important information on pore nucleation and growth in substrate-supported thin films and confirming the predictions of several existing theoretical models on pore growth. We find a linear relation between applied voltage and intrinsic self-organising interpore distance for supported thin films (from 80 to 150 nm) over a wide potential window between 40 and 120 V, mirroring behavior of thicker unsupported foils but with a different coefficient of proportionality. Using this technique, we are able to produce arbitrary and highly regular patterns of pores while manipulating pore pitch up to 20% from the natural spacing. This work demonstrates for the first time how local oxidation can direct self-organisation.en
dc.description.sponsorshipIrish Research Council for Science Engineering and Technology (IRCSET studentship); Higher Education Authority (HEA Program for Research in Third Level Institutions (2007–2011) via the INSPIRE program)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFois, G., Bolger, C. T., Holmes, J. D. and Cross, G. L. W. (2011) 'Proximal oxidation as a director of self-organisation', Journal of Materials Chemistry, 21(24), pp. 8772-8780. doi: 10.1039/C0JM04352Den
dc.identifier.doi10.1039/C0JM04352D
dc.identifier.endpage8780en
dc.identifier.issn0959-9428
dc.identifier.journaltitleJournal of Materials Chemistryen
dc.identifier.startpage8772en
dc.identifier.urihttps://hdl.handle.net/10468/6695
dc.identifier.volume21en
dc.language.isoenen
dc.publisherRoyal Society of Chemistry (RSC)en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Centre for Science Engineering and Technology (CSET)/08/CE/I1432/IE/CSET CRANN: 2nd Term funding/en
dc.relation.urihttp://pubs.rsc.org/en/content/articlelanding/2011/jm/c0jm04352d
dc.rights© Royal Society of Chemistry 2011en
dc.subjectOxidationen
dc.subjectNanostructured materialsen
dc.subjectNanotechnologyen
dc.subjectOxide filmsen
dc.subjectPore sizeen
dc.subjectThin filmsen
dc.subjectAluminium surfaceen
dc.subjectAnodisationen
dc.subjectApplied voltagesen
dc.subjectEtch masken
dc.subjectInterpore distancesen
dc.subjectLinear relationen
dc.subjectLocal oxidationen
dc.subjectMass fabricationen
dc.subjectMetal layeren
dc.subjectNano-scale poresen
dc.subjectNanofabrication processen
dc.subjectNanoscale deviceen
dc.subjectOxide thicknessen
dc.subjectPore formationen
dc.subjectPore growthen
dc.subjectPore nucleationen
dc.subjectPore orderingen
dc.subjectPotential windowsen
dc.subjectRegular patternsen
dc.subjectSelf-organisationen
dc.subjectSelf-organisingen
dc.subjectSurface oxidationsen
dc.subjectTheoretical modelsen
dc.titleProximal oxidation as a director of self organisationen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AAO-Fois-JMaterChem.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: