Microfluidic-based bacterial molecular computing on a chip
dc.contributor.author | Martins, Daniel P. | en |
dc.contributor.author | Taynnan Barros, Michael | en |
dc.contributor.author | O’Sullivan, Benjamin J. | en |
dc.contributor.author | Seymour, Ian | en |
dc.contributor.author | O’Riordan, Alan | en |
dc.contributor.author | Coffey, Lee | en |
dc.contributor.author | Sweeney, Joseph B. | en |
dc.contributor.author | Balasubramaniam, Sasitharan | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Department of Agriculture, Food, and Marine | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2023-03-27T14:50:17Z | |
dc.date.available | 2023-03-27T14:50:17Z | |
dc.date.issued | 2022-07-25 | en |
dc.description.abstract | Biocomputing systems based on engineered bacteria can lead to novel tools for environmental monitoring and detection of metabolic diseases. In this paper, we propose a Bacterial Molecular Computing on a Chip (BMCoC) using microfluidic and electrochemical sensing technologies. The computing can be flexibly integrated into the chip, but we focus on engineered bacterial AND Boolean logic gate and ON-OFF switch sensors that produces secondary signals to change the pH and dissolved oxygen concentrations. We present a prototype with experimental results that shows the electrochemical sensors can detect small pH and dissolved oxygen concentration changes created by the engineered bacterial populations’ molecular signals. Additionally, we present a theoretical model analysis of the BMCoC computation reliability when subjected to unwanted effects, i.e., molecular signal delays and noise, and electrochemical sensors threshold settings that are based on either standard or blind detectors. Our numerical analysis found that the variations in the production delay and the molecular output signal concentration can impact on the computation reliability for the AND logic gate and ON-OFF switch. The molecular communications of synthetic engineered cells for logic gates integrated with sensing systems can lead to a new breed of biochips that can be used for numerous diagnostic applications. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Daniel P. Martins; Barros, M. T., O’Sullivan, B. J., Seymour, I., O’Riordan, A., Coffey, L., Sweeney, J. B. and Balasubramaniam, S. (2022) 'Microfluidic-based bacterial molecular computing on a chip', IEEE Sensors Journal, 22(17), pp. 16772-16784. doi: 10.1109/JSEN.2022.3192511 | en |
dc.identifier.doi | 10.1109/JSEN.2022.3192511 | en |
dc.identifier.eissn | 1558-1748 | en |
dc.identifier.endpage | 16784 | en |
dc.identifier.issn | 1530-437X | en |
dc.identifier.issued | 17 | en |
dc.identifier.journaltitle | IEEE Sensors Journal | en |
dc.identifier.startpage | 16772 | en |
dc.identifier.uri | https://hdl.handle.net/10468/14327 | |
dc.identifier.volume | 22 | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.project | 16/RC/3835 | en |
dc.rights | © 2022, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en |
dc.subject | Bacterial molecular computing | en |
dc.subject | Biosensors | en |
dc.subject | Electrochemical sensing | en |
dc.subject | Microfluidics | en |
dc.subject | Molecular communications | en |
dc.subject | Synthetic logic gates | en |
dc.title | Microfluidic-based bacterial molecular computing on a chip | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Microfluidic-based_Bacterial_Molecular_Computing_on_a_Chip.pdf
- Size:
- 7.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: