Collaborative fair-is-better filtering for implicit feedback
dc.contributor.author | Dong, Hoang V. | en |
dc.contributor.author | Nguyen, Huu-Quang | en |
dc.contributor.author | Nguyen, Hoang D. | en |
dc.contributor.author | Le, Duc-Trong | en |
dc.date.accessioned | 2024-05-29T12:31:15Z | |
dc.date.available | 2024-05-29T12:31:15Z | |
dc.date.issued | 2024 | en |
dc.description.abstract | With the wide adoption of recommender systems, fairness has increasingly become a critical topic in many applications, such as e-commerce, job search, and online entertainment. Collaborative filtering is susceptible to unfair recommendations for users from sensitive groups due to the non-negligible presence of biases. Whereas recent work mostly concerned fairness with the explicit ratings, we propose fairness-awareness recommendation models, referred to as CFBF, for implicit feedback (e.g., clicks, views, or purchases), which are ubiquitous in today’s context. This paper considers sensitive attributes, such as gender and age, in both disjoined and combined manners to investigate the models’ unfairness. We discuss several fairness metrics for implicit feedback recommendations based on Spearman’s rank correlation and Kendal Tau. Comprehensive experiments on Movielens and LastFM show that CFBF significantly improves user groups’ fairness with comparable and even better ranking performance. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Dong, H. V., Nguyen, H.-Q., Nguyen, H. D. and Le, D.-T. (2024) ‘Collaborative fair-is-better filtering for implicit feedback’, 28th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2024), Seville, Spain, 11-13 September. Procedia Computer Science, 246, pp. 1498-1507. https://doi.org/10.1016/j.procs.2024.09.599 | en |
dc.identifier.doi | https://doi.org/10.1016/j.procs.2024.09.599 | |
dc.identifier.eissn | 1877-0509 | en |
dc.identifier.endpage | 1507 | |
dc.identifier.journaltitle | Procedia Computer Science | en |
dc.identifier.startpage | 1498 | |
dc.identifier.uri | https://hdl.handle.net/10468/15949 | |
dc.identifier.volume | 246 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | 28th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2024), Seville, Spain, 11-13 September | en |
dc.rights | © 2024, the Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Collaborative filtering | en |
dc.subject | Fairness | en |
dc.subject | Implicit feedback | en |
dc.title | Collaborative fair-is-better filtering for implicit feedback | en |
dc.type | Conference item | en |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- Kes2024_CFBF_Accepted.pdf
- Size:
- 2.32 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
Loading...
- Name:
- 1-s2.0-S1877050924026504-main.pdf
- Size:
- 813.91 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: