Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis

dc.contributor.authorNolan, Michael
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderHigher Education Authorityen
dc.date.accessioned2017-12-18T15:06:41Z
dc.date.available2017-12-18T15:06:41Z
dc.date.issued2011-09-15
dc.date.updated2017-12-18T14:59:21Z
dc.description.abstractIn recent experiments Tada et al. have shown that TiO2 surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO2 (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO2. Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO2 surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials.en
dc.description.sponsorshipScience Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationNolan, M. (2011) 'Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis', Physical Chemistry Chemical Physics, 13(40), pp. 18194-18199. doi: 10.1039/c1cp21418gen
dc.identifier.doi10.1039/c1cp21418g
dc.identifier.endpage18199en
dc.identifier.issn1463-9076
dc.identifier.journaltitlePhysical Chemistry Chemical Physicsen
dc.identifier.startpage18194en
dc.identifier.urihttps://hdl.handle.net/10468/5188
dc.identifier.volume13en
dc.language.isoenen
dc.publisherRoyal Society of Chemistryen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/en
dc.rights© the Owner Societies 2011. This is the accepted manuscript version of an article published in Physical Chemistry Chemical Physics. The version of record is available at http://dx.doi.org/10.1039/C1CP21418Gen
dc.subjectPhotocatalysisen
dc.subjectAugmented-wave methoden
dc.subjectTitanium dioxideen
dc.subjectDoped TiO2en
dc.subjectCatalytic activityen
dc.subjectAnatase TiO2en
dc.subjectSurfacesen
dc.subjectDensityen
dc.subjectRutileen
dc.subjectFilmsen
dc.subjectCeriaen
dc.subjectDensity functional theoryen
dc.titleElectronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysisen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4425.pdf
Size:
24.8 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: