Solid state pathways to complex shape evolution and tunable porosity during metallic crystal growth

dc.contributor.authorValenzuela, Carlos Díaz
dc.contributor.authorCarriedo, Gabino A.
dc.contributor.authorValenzuela, María Luisa
dc.contributor.authorZúñiga, Luis
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderFondo Nacional de Desarrollo Científico y Tecnológicoen
dc.contributor.funderDirección General de Investigación Científica y Técnicaen
dc.contributor.funderHigher Education Authorityen
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderUniversity College Corken
dc.contributor.funderIrish Research Councilen
dc.date.accessioned2018-05-17T15:22:44Z
dc.date.available2018-05-17T15:22:44Z
dc.date.issued2013-09-12
dc.date.updated2018-05-15T23:39:00Z
dc.description.abstractGrowing complex metallic crystals, supported high index facet nanocrystal composites and tunable porosity metals, and exploiting factors that influence shape and morphology is crucial in many exciting developments in chemistry, catalysis, biotechnology and nanoscience. Assembly, organization and ordered crystallization of nanostructures into complex shapes requires understanding of the building blocks and their association, and this relationship can define the many physical properties of crystals and their assemblies. Understanding crystal evolution pathways is required for controlled deposition onto surfaces. Here, complex metallic crystals on the nano- and microscale, carbon supported nanoparticles, and spinodal porous noble metals with defined inter-feature distances in 3D, are accomplished in the solid-state for Au, Ag, Pd, and Re. Bottom-up growth and positioning is possible through competitive coarsening of mobile nanoparticles and their site-specific crystallization in a nucleation-dewetted matrix. Shape evolution, density and growth mechanism of complex metallic crystals and porous metals can be imaged during growth.en
dc.description.sponsorshipFondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT (Project 1085011 and 1095135)); Dirección General de Investigación Científica y Técnic DGICYT (Project CTQ2010-18330); Higher Education Authority (under the framework of the INSPIRE programme, funded by the Irish Government's Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013); University College Cork (UCC Strategic Research Fund); Irish Research Council (New Foundations Award)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationValenzuela, C. D., Carriedo, G. A., Valenzuela, M. L., Zúñiga, L. and O'Dwyer, C. (2013) 'Solid State Pathways to Complex Shape Evolution and Tunable Porosity during Metallic Crystal Growth', Scientific Reports, 3, 2642 (8pp). doi: 10.1038/srep02642en
dc.identifier.doi10.1038/srep02642
dc.identifier.endpage2642-8en
dc.identifier.issn2045-2322
dc.identifier.journaltitleScientific Reportsen
dc.identifier.startpage2642-1en
dc.identifier.urihttps://www.nature.com/articles/srep02642
dc.identifier.urihttps://hdl.handle.net/10468/6144
dc.identifier.volume3en
dc.language.isoenen
dc.publisherSpringer Natureen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Stokes Professorship & Lectureship Programme/07/SK/B1232a/IE/Colm ODwyer/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Short Term Travel Fellowship (STTF)/07/SK/B1232a - STTF 11/IE/Optical Probing of Phase Changes in Inverse opal Photonic Crystal Li-on Battery Electrodes/en
dc.rights© 2013 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en
dc.subjectMaterials chemistryen
dc.subjectMaterials scienceen
dc.subjectNanoscale materialsen
dc.subjectNanocrystalsen
dc.subjectNanoparticlesen
dc.titleSolid state pathways to complex shape evolution and tunable porosity during metallic crystal growthen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
srep02642.pdf
Size:
914.96 KB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
srep02642-s1.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description:
Supplementary Material
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: