Steering surface topographies of electrospun fibers: understanding the mechanisms

dc.contributor.authorYazgan, Gökçe
dc.contributor.authorDmitriev, Ruslan I.
dc.contributor.authorTyagi, Vasundhara
dc.contributor.authorJenkins, James
dc.contributor.authorRotaru, Gelu-Marius
dc.contributor.authorRottmar, Markus
dc.contributor.authorRossi, René M.
dc.contributor.authorToncelli, Claudio
dc.contributor.authorPapkovsky, Dmitri B.
dc.contributor.authorManiura-Weber, Katharina
dc.contributor.authorFortunato, Giuseppino
dc.contributor.funderSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschungen
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2017-03-27T12:12:40Z
dc.date.available2017-03-27T12:12:40Z
dc.date.issued2017-03-13
dc.date.updated2017-03-27T11:51:32Z
dc.description.abstractA profound understanding of how to tailor surface topographies of electrospun fibers is of great importance for surface sensitive applications including optical sensing, catalysis, drug delivery and tissue engineering. Hereby, a novel approach to comprehend the driving forces for fiber surface topography formation is introduced through inclusion of the dynamic solvent-polymer interaction during fiber formation. Thus, the interplay between polymer solubility as well as computed fiber jet surface temperature changes in function of time during solvent evaporation and the resultant phase separation behavior are studied. The correlation of experimental and theoretical results shows that the temperature difference between the polymer solution jet surface temperature and the dew point of the controlled electrospinning environment are the main influencing factors with respect to water condensation and thus phase separation leading to the final fiber surface topography. As polymer matrices with enhanced surface area are particularly appealing for sensing applications, we further functionalized our nanoporous fibrous membranes with a phosphorescent oxygen-sensitive dye. The hybrid membranes possess high brightness, stability in aqueous medium, linear response to oxygen and hence represent a promising scaffold for cell growth, contactless monitoring of oxygen and live fluorescence imaging in 3-D cell models.en
dc.description.sponsorshipSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (NRP 62 Grant; IRENA: Intelligent responsive nanofibres: 406240_126128); Science Foundation Ireland (SFI Grant Numbers 13/SIRG/2144 and 12/RC/2276)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid158
dc.identifier.citationYazgan, G., Dmitriev, R. I., Tyagi, V., Jenkins, J., Rotaru, G.-M., Rottmar, M., Rossi, R. M., Toncelli, C., Papkovsky, D. B., Maniura-Weber, K. and Fortunato, G. (2017) ‘Steering surface topographies of electrospun fibers: understanding the mechanisms’, Scientific Reports, 7, 158 (13pp). doi:10.1038/s41598-017-00181-0en
dc.identifier.doi10.1038/s41598-017-00181-0
dc.identifier.endpage13en
dc.identifier.issn2045-2322
dc.identifier.journaltitleScientific Reportsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/3837
dc.identifier.volume7en
dc.language.isoenen
dc.publisherNature Publishing Groupen
dc.rights© 2017, the Authors. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectOptical sensingen
dc.subjectCatalysisen
dc.subjectDrug deliveryen
dc.subjectTissue engineeringen
dc.subjectSolventen
dc.subjectPolymeren
dc.subjectEvaporationen
dc.subjectSurface areaen
dc.subjectPhosphorescenten
dc.subjectDyeen
dc.subjectCell growthen
dc.subjectImagingen
dc.titleSteering surface topographies of electrospun fibers: understanding the mechanismsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2735.pdf
Size:
9.11 MB
Format:
Adobe Portable Document Format
Description:
Published Version
Loading...
Thumbnail Image
Name:
Supplementary File.pdf
Size:
976.26 KB
Format:
Adobe Portable Document Format
Description:
Supplementary Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: