Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode

dc.contributor.authorOsiak, Michal J.
dc.contributor.authorKhunsin, E.
dc.contributor.authorArmstrong, T.
dc.contributor.authorSotomayor Torres, Clivia M.
dc.contributor.authorRyan, K. M.
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderIrish Research Council for Science Engineering and Technologyen
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2016-07-06T09:10:19Z
dc.date.available2016-07-06T09:10:19Z
dc.date.issued2013-01-22
dc.date.updated2013-02-07T13:25:46Z
dc.description.abstractUnique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.en
dc.description.sponsorshipIrish Research Council (RS/2010/2170); MINECO projects, Spain (ACPHIN (FIS2009-10150) and TAPHOR (MAT2012-31392)): CONSOLIDER project (nanoTHERM (CSD2010-00044)); Catalan AGAUR grant 2009-SGR-150; Science Foundation Ireland (SFI award no. 07/SK/B1232a)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid065401
dc.identifier.citationOsiak, M. J., Khunsin, W., Armstrong, E., Kennedy, T. Sotomayor Torres, C. M., Ryan, K. M. and O'Dwyer, C. (2013) 'Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode', Nanotechnology, 24: 065401. http://stacks.iop.org/0957-4484/24/i=6/a=065401en
dc.identifier.doi10.1088/0957-4484/24/6/065401
dc.identifier.endpage065401 (10)en
dc.identifier.issn0957-4484
dc.identifier.journaltitleNanotechnologyen
dc.identifier.startpage065401 (1)en
dc.identifier.urihttps://hdl.handle.net/10468/2827
dc.identifier.volume24en
dc.language.isoenen
dc.publisherIOP Publishingen
dc.rights© 2013 IOP Publishing Ltd.en
dc.subjectPerfect antireflection coatingsen
dc.subjectITO Nanowiresen
dc.subjectLithiumen
dc.subjectElectrodesen
dc.subjectSilicaen
dc.subjectFabricationen
dc.subjectLight emitting diodesen
dc.subjectRefractive indexen
dc.titleEpitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anodeen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
in2o3-rev.pdf
Size:
5.85 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: